如图 直线mn与圆o相切于点p,ab

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 14:18:05
如图 直线mn与圆o相切于点p,ab
如图,P是圆O外一点,PA,PB分别与圆O相切于点A,B,点C是弧AB上一点,经过点C作圆O的切线,分别与PA,PB相交

 (1)在直角三角形AOD,COD中; 根据直角斜边(HL)证全等;      OC=OA, OD=OD;三角

点M(-3,0)N(3,0)B(1,0)圆O与MN相切于点B,过M,N与圆O相切的两直线相交于点P,则P点的轨迹方程为-

P点到M,N的距离差为(1+3)-(3-1)=2=2a,a=1,c=3,所以b=2*根号2,方程为x方/1-y方/8=1,(x>1)

如图,已知直线l与圆O相离,OA⊥l于点A,OA=5,OA与圆O相交于点P,AB与圆O相切于点B.BP的延长线交直线l于

解:设圆的关径为x,则AP=5-x.∵AB=AC.∴AB²=AC²,即OA²-OB²=PC²-AP²,5²-x²=(2√

直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动 1 如图

∠AEB的大小不变∵直线MN与直线PQ垂直相交于O∴∠AOB=90°∴∠OAB+∠OBA=90°∵AE、BE分别是∠BAO和∠ABO角的平分线∴∠BAE=1/2∠OAB,∠ABE=1/2∠ABO∴∠B

如图,已知直线l1与抛物线x^2=4y相切于P(2,1),且与x轴交于点A,O为坐标原点,点B的坐标为(2,0)

(1)抛物线导数为y'=x/2在点P(2,1)处的切线斜率为y'(2)=1∴切线方程为y=1*(x-2)+1=x-1与x轴的交点为A(1,0),已知B(2,0)设点M坐标为M(x,y)

如图,已知AB是是圆O的直径,直线CD与圆O相切于点C,AC平分∠DAB.

(1)连接OC∵OC=OA∴∠CAO=∠OCA又∵CD与圆O相切∴∠OCD=90°即∠OCA+∠DCA=90°∴∠CAO+∠DCA=90°又∵AC平分∠DAB∴∠DAC=∠CAO∴∠DAC+∠DCA=

如图已知AB是圆O的直径,直线CD与圆O相切于点C,AC平分角DAB

1,连接AC,AD,AB,CO因为AB是直径,CO是半径,所以AO=BO=CO,故CO将角AOB平分,易得角AOC=角COB=90度,角CAO=45度,因为AC平分角DAB,所以角DAC=角CAO=4

如图1,点O在角APB的平分线上,圆O与PA相切于点C.(1)求证:直线PB于圆O相切

(1)连结OC作OD⊥PBD为垂足∵圆O与PA相切于点C∴OC⊥PA又OD⊥PB点O在角APB的平分线上∴OD=OC即圆心O到直线BP的距离等于圆的半径∴直线PB于圆O相切2设PO交圆于F∵圆O与PA

如图,点O在∠APB的平分线上,⊙O与PA相切于点C. 求证:直线PB与⊙O相切;

连接OC,过O作ON⊥PB于N∵⊙O与PA相切于点C∴OC⊥PA又∵ON⊥PB且O在∠APB的平分线上∴OC=ON∴直线PB与⊙O相切

如图,点O在∠APB的平分线上,⊙O与PA相切于点C.(1)求证:直线PB与⊙O相切;

(1)证明;过点O作OD垂直PB于D所以角ODP=90度因为圆O与PA相切于C所以角OCP=90度所以角OCP=角ODP=90度因为点O在角APB的平分线上所以叫OPC=角OPD因为OP=OP所以三角

如图,已知⊙O的直径AB=2,直线m与⊙O相切于点A,P为⊙O上一动点(与点A、点B不重合),PO的延长线与⊙O相交于点

(1)证明:∵PC是⊙O的直径,CD是⊙O的切线,∴∠PAC=∠OCD=90°,∵DA,DC是⊙O的切线,∴∠ADO=∠CDO,AD=DC,∴DO⊥AC,∴PA∥OD,∴∠P=∠DOC,∴△APC∽△

如图,点o在∠APB的平分线上,圆o与PA相切于点c.

由题意可得:OE=3,PC=4连接OC,过C作CH垂直于PO因为圆o与PA相切于点c,所以角OCP=90因为OE=OC=3,PC=4,角OCP=90所以PO=5有面积法可得CH=12/5在RT三角形O

如图1,大半圆o与小半圆o1是同心圆,直径cd与mn在同一直线上,大半圆的弦ab与小半圆相切于点f,

郭敦顒回答:(1)条件中没有大圆或小圆半径的数值,求不出半圆中阴影部分的面积,而且也未显示出半圆中阴影部分为何部.(2)不论是否给出了半径的数值和半圆中阴影部分在何处(但必须是弓形部位或两侧部位),若

如图,点O在角APB的平分线上,圆o与PA相切于点c. (1)求证:直线PB与圆O相切;

(1)证明:连接OC,作OD⊥PB于D点.∵⊙O与PA相切于点C,∴OC⊥PA.∵点O在∠APB的平分线上,OC⊥PA,OD⊥PB,∴OD=OC.∴直线PB与⊙O相切;设PO交⊙O于F,连接CF.∵O

如图1,大半圆o与小半圆o1是同心圆,直径cd与mn在同一直线上,大半圆的弦ab与小半圆相切于点f ,且ab平行于cd,

(1)连接OA、OB、OF,角AOF=90度根据勾股定理AF^2=OA^2-OF^2=大圆半径^2-小圆半径^2=(1/2AB)^2=(6/2)^2=9阴影部分的面积=1/2(大圆面积-小圆面积)=1

如图,点P的坐标为(-2,1),⊙P与y轴相切,与x轴交于A.、B两点,直线MN过点M(2,3),N(4,1).

向右平移4个单位长度,但是B还是找不到啊,囧再问:A、B两点是⊙P与x轴的两个交点,A是左边交点,B是右边交点。

如图 ab是圆o的直径 弦cd垂直ab于m点 p是cd延长线上的一点 pe与圆o相切于点e be交cd于f 求pf方=p

这是一道关于圆的题目,下面开始证明证明:连结AE∴∠AEB=90º,∠PEB=∠EAB(弦切角定理)∵CD⊥AB,∴∠BFM=∠BAE=∠PEF∴PE=PF连接CE,ED∵∠PED=∠PCE

已知:如图①,在▱ABCD中,O为对角线BD的中点.过O的直线MN交直线AB于点M,交直线CD于点N;过O的另一条直线P

(1)证明:在平行四边形ABCD中,AD∥BC,∴∠PDO=∠QBO.∵∠DOP=∠BOQ,DO=BO,∴△DOP≌△BOQ.∴PO=QO.(2分)同理MO=NO.∵∠PON=∠QOM,∴△PON≌△

如图,PA切⊙O于A点,PO平行AC,BC是⊙O的直径.请问:直线PB是否与⊙O相切?并证明.

PB与圆O相切,理由如下:连结OA∵PA切圆O于A,∴∠OAP=90°∵AC∥OP,∴∠C=∠POB,∠CAO=∠AOP,∵OA=OC,∴∠C=∠CAO,∴∠AOP=∠BOP,又∵OP=OP,OA=O