如图 直线l1比y=三分之1x与直线l3比y=-x 24相较于点B

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:16:42
如图 直线l1比y=三分之1x与直线l3比y=-x 24相较于点B
(2011•江干区模拟)如图,直线l1:y=x+1与直线l2:y=12x+12相交于点P(-1,0).直线l1与y轴交于

由直线直线l1:y=x+1可知,A(0,1),根据平行于x轴的直线上两点纵坐标相等,平行于y轴的直线上两点横坐标相等,及直线l1、l2的解析式可知,B1(1,1),AB1=1,A1(1,2),A1B1

如图,直线l1:y=x+1与直线l2:y=-x+3相交于点P,直线l1、l2与y轴的交点分别为点A、B.

P坐标(1,2)A(0,1)B(0,3)△ABP为等腰直角三角形你在坐标上画出这三个点就知道三角形形状了,一目了然.

如图,直线l1的解析表达式为y=1/2x+1,且l1与x轴交与点D,直线l2经过定点A,B,直线l1,l2交于点C,在直

p点坐标是(5,-1),首先根据面积相等判断p点在x轴下方,画出三角形adp,已知A\B两点坐标直线L2的方程式可求出:Y=-X+4,.解L1、L2的二元一次方程求出C点坐标(2,2),利用三角形面积

如图,直线Y=负三分之根号三X+1与X轴 Y轴分别交于点A B,以线段AB为直角边在第一象限内作等腰直角三角形ABC,角

1.令X=0,得Y=1,B(1,0)同理A(根号3,0)直角三角形BOA中,OB=1,OA=根号3,AB平方=OA平方+OB平方,所以AB=2因为三角形ABC等腰直角三角形,且AB为直角边.所以等腰直

如图,直线l1,l2经过A(0,4)点D(4,0),直线l2:y=(1/2)X+1与x轴交于点C,两直线l1,l2相交于

(1)L1的解析式设为y=kx+b,把(4,0)和(0,4)代入得:4k+b=0、b=4解得:k=-1,b=4所以:L1的解析式为y=-x+4(2)把y=(1/2)X+1与y=-x+4联立方程组解得x

如图,已知直线L1:4x+y=0,直线L2:x+y-1=0以及L2上一点P(3,-2).求圆心在L1上且与直线L2相切于

洛逸夏,你好:所求圆与直线L2相切于点P(3,-2),则圆心在过点P且垂直于L2的直线m上直线m的方程为y+2=x-3,即x-y-5=0.将直线m与直线L1的方程联立,解得圆心坐标为C(1,-4)半径

如图,直线l1的表达式为y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C 如图,直线l

设该函数为Y=KX+B依题意得,0=4K+B,-3/2=3K+B解得K=3/2,B=-6即,Y=3/2X-6

区卷,一次函数如图,已知直线l1:y=kx+b与直线l2:y=2x图像交与点A(b,2),直线l1与y轴交与B点 (1)

因为l1与l2交于点A,所以把A点带入l2得,b=1,然后再把A点带入l1,就可以把k算出来,k=1,所以直线l1:y=x+1因为直线1与y交于b点,所以把x=0带入l1,就算出B为(0,1)所以面积

如图,已知直线L1:4x+y=0,直线L2:x+y-1=0以及L1上一点P(3,-2),求圆心在L1上且与直线L2相切于

所求圆与直线L2相切于点P(3,-2),则圆心在过点P且垂直于L2的直线m上直线m的方程为y+2=x-3,即x-y-5=0.将直线m与直线L1的方程联立,解得圆心坐标为C(1,-4)半径r=|PC|=

如图,直线l1的表达式为y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.①求直线l2

①已知A和B的坐标B坐标就是(3,-3/2)就可以得出l2的斜率k已知斜率和直线上任意一点坐标就可以求出l2解析式了③在1中求出l2的情况下通过l1和l2的解析式算出交点C的坐标再用l1算出D的坐标.

两直线l1比y=2x-1,

解题思路:本题主要根据直线方程的有关知识进行解答即可。解题过程:L1:y=2x-1,L2;y=x+1直接联立两直线方程:y=2x-1;y=x+1y=2x-1=x+1x=2y=3所以两直线L1:y=2x

如图,直线y= -三分之根号三x+b与y轴交于点A,与双曲线y=x分之k 在第一象 限交于B、C两点,且AB*AC=4,

y=-√3/3x+b与y轴交点A(0,b)与y=k/x在第一象限交于B,C-√3/3x+b=k/xx²-√3bx+k=0x1+x2=√3b,x1x2=kAB*AC=4√{x1²+(

(2014•日照一模)如图,直线l1:y=x+1与直线l2:y=12x+12相交于点P(-1,0).直线l1与y轴交于点

由直线直线l1:y=x+1可知,A(0,1),根据平行于x轴的直线上两点纵坐标相等,平行于y轴的直线上两点横坐标相等,及直线l1、l2的解析式可知,B1(1,1),AB1=1,A1(1,2),A1B1

如图,已知直线l1:4x+y=0,直线l2:x+y-1=0以及l2上一点P(3,-2).求有圆心在l1上且与直线l2相切

∵圆心在l1上,直线l1:4x+y=0,∴设圆心坐标为(m,-4m)又∵圆与直线l2相切于点P,直线l2:x+y-1=0以及点P(3,-2).∴|m−4m−1|2=(m−3)2+(−4m+2)2即m2

如图,已知两条直线l1:x-3y+12=0,l2:3x+y-4=0,过定点P(-1,2)作一条直线l,分别与l1,l2交

由题意设所求直线l的方程为:y-2=k(x+1),联立方程可得y−2=k(x+1)x−3y+12=0,解方程组可得交点M的横坐标xM=3k−61−3k,同理由y−2=k(x+1)3x+y−4=0,可得