如图 直线l1垂直于l2AB是直线L1上的两点OB=2AB=根号2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 17:03:49
(1)L1斜率为根3,角BAC=60度角OAB=角OBC=120度角OBA=120度-90度=30度角BOA=30度OB为:y=[(根3)/3]*xOB与L1方程联立,得B点坐标(根3,1)代入L2,
设点P坐标为(-1,y),代入y=2x+3得y=1∴点P(-1,1)设直线l2的函数表达式为y=kx+b,把P(-1,1),A(0,-1)分别代入y=kx+b得1=-k+b-1=b∴k=-2b=-1∴
p点坐标是(5,-1),首先根据面积相等判断p点在x轴下方,画出三角形adp,已知A\B两点坐标直线L2的方程式可求出:Y=-X+4,.解L1、L2的二元一次方程求出C点坐标(2,2),利用三角形面积
设该函数为Y=KX+B依题意得,0=4K+B,-3/2=3K+B解得K=3/2,B=-6即,Y=3/2X-6
①已知A和B的坐标B坐标就是(3,-3/2)就可以得出l2的斜率k已知斜率和直线上任意一点坐标就可以求出l2解析式了③在1中求出l2的情况下通过l1和l2的解析式算出交点C的坐标再用l1算出D的坐标.
问题(1):设B(0,b)因为点B在l2直线上,l2解析式为y=3x+6所以b=0+6b=6所以B(0,6)又C(8,0)所以l2解析式:y=-3x/4+6(2)做QM⊥BO,QN⊥CO设点Q(q,q
AB=BC=CD=DA,∠ABC=∠BCD=∠CDA=∠DAB=∠CQB=∠BMA=∠AND=∠DPC=90°∵∠PCD+∠QCB=90°∠PCD+∠PDC=90°∴∠QAB=∠PDC∴直角△PCD≌
1,设PCD=∠1,∠PDC=∠2;那么∠ACP+∠1+∠2+∠PDB=180°.又因为∠1+∠2+∠CPD=180°,得∠ACP+∠PDB=∠CPD.2,P在AB两点之间运动,关系不会发生变化.3,
证明:连接AF,交L2于G点,连接BG、GE,可知BG//CF,GE//AD在∆ACF中,BG//CF即AB/BC=AG/GF在∆ADF中,GE//AD即DE/EF=AG/GF
1.L1平行L2,两直线平行,同位角相等,所以角为90°,所以互相垂直2.两直线平行,同位角相等,内错角相等.运用这个来找.
解题思路:结合垂直平分线的性质进行证明解题过程:解:直线AD是线段EF的垂直平分线。理由如下:∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90&d
(1)∠2=∠1+∠3.证明:如图1,过点P作PE∥l1,∵l1∥l2,∴PE∥l2,∴∠1=∠APE,∠3=∠BPE.又∵∠2=∠APE+∠BPE,∴∠2=∠1+∠3;(2)①如图2所示,当点P在线
l1垂直于l2需a/(a-1)*(1-a)/(2a+3).=-1解得a=-3或1特殊情况a=1,一条斜率为0,另一条不存在(2)假设存在实数a,使l1平行于l2,则a/(a-1)=(1-a)/(2a+
因为a垂直于c,所以角1=90°因为b垂直于c,所以角2=90°同位角相等,两直线平行或者同垂直于一条直线的两直线平行
延长DP交l1于点E∠α+∠β=∠γ因为l1∥l2所以∠1=∠β因为∠CPD是△PCE的外角所以∠CPD=∠1+∠β所以:∠α+∠β=∠γ
已知角BAO=30度,OB=1,所以AB=BC=2,AC=4,A(-sqrt(3),0)因为APC为等腰三角形,所以:(1)以PC为底,AC,AP为腰,则AP=AC=4,P(4-sqrt(3),0)(
过B点做一条平行与l1的直线可得角2=角1+90度=120度,希望采纳.
图④:∠1+∠2+∠3=360°,图⑤:∠1=∠2+∠3,图⑥:∠2=∠1+∠3.