如图 直线ab经过圆o上的点c 并且oa ob

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:34:52
如图 直线ab经过圆o上的点c 并且oa ob
如图,AB是圆O的直径,点C在圆O上,∠BOC=108°,过点C作直线CD分别交直线AB和圆O于点D、E,连接OE,DE

设∠CDB为X,∠CEO为YX+2(180-Y)=180Y=X+(180-Y)解这两个方程组得y=∠CEO=138°X=∠CDB=96°

如图,直线AB经过圆O上一点C,且OA=OB,CA=CB,判断直线AB与圆O的位置关系,并说明理由

相切因为OA=OB,CA=CB,所以点C为等腰三角形的中点,因此OC垂直于AB,即OC垂直于AC;又因为点C在圆上,OC为圆的半径,所以AB与圆O相切

如下图所示,直线AB经过圆O上的点C,并且OA=OB,CA=CB,求证直线AB是圆O的切线

证明:连接OC∵OA=OB,CA=CB,OC=OC∴⊿AOC≌⊿BOC(SSS)∴∠ACO=∠BCO∵∠ACO+∠BCO=180º∴∠ACO=∠BCO=90º即OC⊥AB,根据垂直

如图,直线AB经过⊙O上的点C,AB为⊙O的切线,并且CA=CB,求证:OA=OB.

证明:AB为⊙O的切线,所以OC垂直AB又因为CA=CB,所以,OC为垂直平分线因此有OA=OB

①如图1,已知AB是圆O的直径,点C是圆O上一点,连接BC,AC,过点C作直线CD⊥AB于点D,点E是AB上一点,直线C

话说第一题.很简单.相似三角形概念.(1)点A和点F同在圆上,且都对应弦BC,所以角A=角F,CD垂直于AB,那么角DCB=角A,所以角DCB=角F,因此,三角形FCB相似于三角形CBG,所以BC/B

如图,直线AB经过⊙O上的点C,AB为⊙O的切线,并且CA=CB,OA=OB.求ab是圆o的切线

证明:连接OC∵OA=OB,AC=CB,OC=OC∴△AOC≌△BOC∴∠ACO=∠BCO∵∠ACO+∠BCO=180°∴∠ACO=90°∵C在⊙O上∴AB是⊙O的切线

直线AB经过圆O上的点C,并且OA=OB,AC=BC.求证:直线AB是圆O的切线

因为OA=OB,所以三角形AOB为等腰三角形又因为AC=BC,根据“等腰三角形底边的中点即为底边的垂足所以OC垂直于AB又因为直线AB经过圆O上的点C所以直线AB是圆O的切线

如图,C为圆O直径AB上的一动点,过点C的直线交圆O

这道题没有具体的函数关系式这道题主要的是看我们的趋势判断能力因为这里面没有数值写不出具体的关系式只能说是一个抛物线的数值关系你们现在还没有学到高中才有的哈你也可以看看http://baike.baid

如图,已知直线AB经过圆O上的点C,并且0A=OB,CA=CB,那么直线AB是圆O的切线吗?

是.因为O,C都在AB的垂直平分线上,OC垂直AB,同时OC=半径,C必然是切点.

1:如图1 已知直线AB经过圆O上的点C,并且OA=OB,CA=CB,那么直线AB是圆O的切线吗?

第一题用反证法,假设不是切线,即直线跟圆有两个交点,而OA=OB,可得出A、B关于过O点作AB的垂线对称,而该垂线自O点向AB方向与圆仅一个交点;而CA=CB,则C必在AB的中垂线上,同理,另外一点也

如图,AB是圆O的直径,点C在圆O上,∠BOC=108°,过点C作直线CD分别交直线AB和圆O于点D、E,连接OE,

(1)DE=AB/2=OE,则:∠EDO=∠EOD=(1/2)∠OEC;OE=OC,则:∠OCE=∠OEC=∠EDO+∠EOD=2∠CDB.∵∠BOC=∠OCE+∠CDB=3∠CDB.即108°=3∠

如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E,D.

证明连接OC∵OA=OB,CA=CB,∴OC⊥AB,∴AB是⊙O的切线.BC2=BD*BE.证明:∵ED是直径,∴∠ECD=90°,∴∠E+∠EDC=90°.又∵∠BCD+∠OCD=90°,∠OCD=

如图AB时圆o的直径,点c在圆o上,过点c的直线与AB的延长线交于点p,且角A等于角pcB.求pc是圆o的切线

简单说说吧标角比较麻烦,就用1234了1=23=41+4=2+3ACB=90所以OCP=90再问:还有一题您看看再答:先悬赏撒,辛辛苦苦不容易的再问:等等会的诺cA等于cp,pB等于一求Bc的弧长再答

1.如图已知AB是圆O的直径,C是圆O一点,连接AC,过点C做CD垂直AB于点D,E是AB上的一点,直线CE于圆O

在AB取点E,使AE=AD,易证三角形ADC与三角形AEC全等,可得:角ADC=角AEC三角形CB详细在AB上取点E,使AE=AD,连接CE因为AC平分角BAD所以角EAC=角DAC因为AE=AD,A

如图,已知直线AB经过圆O的圆心,且与圆O相交于A,B两点,点C在圆O上且∠AOC=30°点P是直线AB上一个动点

符合条件的点P共有三个.(1)当点P在BA延长线上P1点时:若OQ=P1Q,则∠QOP1=∠QP1O,设∠COQ=X,则∠QP1O=X+30.∠OCQ=X+60=∠OQC. 则:2(X+60