如图 直线ab cd ef交于点o,OG垂直CD,角BOD=32度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:11:19
如图 直线ab cd ef交于点o,OG垂直CD,角BOD=32度
如图,已知OA、OB是⊙O的半径,且OA⊥OB,P是线段OA上一点,直线BP交⊙O于点Q,过Q作⊙O的切线交直线OA于点

证明:连接AB,则∠AQE=∠ABP,而OA=OB,所以∠ABO=45°所以∠OBP+∠AQE=∠OBP+∠ABP=∠ABO=45°

如图PA、PB分别切圆O于A、B两点,直线OP交于圆O于D、E两点,交AB于点C.

(1)连结OA、OB,则OA⊥AP,OB⊥BP∴∠AOB=180°-∠APB=110°∠AQB=1/2∠AOB=55°(2)由切割线定理PA^2=PD*PE=PD*(PD+DE)可算得DE=6,∴圆的

已知:如图,在▱ABCD中,O为对角线的中点.过O的直线MN交AB边于点M,交CD边于点N;过O的另一条直线PQ交AD边

证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠PDO=∠QBO,在△POD和△QOB中,∠PDO=∠ABOOD=OB∠POD=∠QOB,∴△POD≌△QOB(ASA),∴OP=OQ,同理:ON

如图,MP切⊙O于点M,直线PO交⊙O于点A、B,弦AC∥MP,

证明:∵AB是⊙O的直径,∠ACB是直径所对的圆周角,∴∠ACB=90°.∵MP为⊙O的切线,∴∠PMO=90°.∵MP∥AC,∴∠P=∠CAB.∴∠MOP=∠B.故MO∥BC.

已知 如图,AB是圆O一条弦,点C为弧AB中点,CD是圆O的直径,过C点的直线L交AB所在直线于点E,交圆O于点F.

∵点C为弧AB的中点,CD是圆O的直径\x0d∴CD垂直AB\x0d∴角CEB+角FCD=90度\x0d∵CD是圆O的直径\x0d∴角CFD=90度\x0d∵角FDC+角FCD=90度\x0d∴角CE

如图已知圆o1和圆o2相交于A,B两点,直线o1o2交圆o1于点P,直线PA交圆o2于点C,直线PB交圆o于点D

连接AB,则PO2垂直平分AB,(连心线垂直平分公共弦)∴PA=PB,∠O2PA=∠O2PB∴∠PAB=∠PBA,∵∠PAB=∠D,∠PBA=∠C(圆内接四边形的外角等于内对角),∴∠D=∠C,∴PC

如图,直线AB,CD交于点O,OE⊥AB于点O`.∠DOE=32°.求∠AOC的度数

因为OE⊥AB,所以∠AOE=∠BOE=90°因为∠DOE=32°,所以∠BOD=∠BOE-∠DOE=58°因为∠BOD和∠AOC互为对顶角由对顶角相等得∠AOC=58°

如图1,AB是圆O的一条弦,点C是弧AB的中点,CD是圆O的直径,过点C的直线l交AB所在直线于E,交圆O于F

(1)角CEA=角D.(2)结论仍成立.证明:CD为直径,则∠DFC=90°,得∠D+∠DCF=90°;点C为弧AB的中点,则CD垂直AB,得:∠CEA+∠DCF=90°.所以,∠CEA=∠D.

已知:如图,在平行四边形ABCD中对角线AC、BD相交于点O,直线EF过点O,分别交AD、BC于

因为四边形ABCD是平行四边形,所以AC和BD互相平分,所以BO=DO,又角EDO=角FBO角BOF=角DOE所以三角形BOF全等于三角形DOE,所以EO=FO.同理可证三角形BOG全等于三角形DOH

如图,在平行四边形ABCD中,对角线AC与BD相交于点O,直线EF过点O,分别交AD、BC于点E、F,直线GH过点O,

∵AC、BD为□ABCD的对角线的交点,且相交于点O,∴OA=OC,∵AD∥BC,∴∠EAO=∠FCO,又∠AOE=∠COF,∴△AOE≌△COF,∴OE=OF.同理OG=OH,∴四边形EGFH为平行

如图,在平行四边形ABCD中,点o是对角线Ac的中点,过点o作直线EF分别交Bc,AD于点E,F.

你没图,我就按我的理解来做了!(1)因.角AOF = 角COE (对顶角相等)且.角DAC = 角ACB (内错角相等)得.三角形 

如图.在平行四边形abcd中,对角线ac,bd相交于点o,直线mn经过点o,交BC于点m,交AD于点n,bm等于二,an

∵平行四边形ABCD∴BO=DO,∠ADB=∠CBD,AD=BC∵∠DON=∠BOM(对顶角相等)∴△DON≌△BOM(ASA)∴DN=BM∵BM=2∴DN=2∵AD=AN+DN,AN=2.8∴AD=

如图直线y=4/3x+4交x轴于点B,交y轴于点A,圆M过A,O两点

(1)根据题意说明圆O'以AO为直径则OC为半径:R=4/2=2三角形ACO为直角三角形则弦长AC=√(AO²-OC²)=√(4²-2²)=2√3(2)圆心O在

如图①,四边形ABCD是平行四边形,对角线AC,BD相交于点O,过点O做直线EF分别交AD,BC于点E,F.

(1)证明:因为四边形ABCD是平行四边形所以OA=OCAD平行BC所以角OAE=角OCF角OEA=角OFC所以三角形OEA和三角形OFC全等(AAS)所以OE=OF(2)结论成立证明:因为四边形AB

如图,已知MP切圆O于点M,直线PO交圆O于点A、B,弦AC平行MP,求证:MO平行BC.

证明:∵AB是⊙O的直径,∠ACB是直径所对的圆周角,∴∠ACB=90°.∵MP为⊙O的切线,∴∠PMO=90°.∵MP∥AC,∴∠P=∠CAB.∴∠MOP=∠B.故MO∥BC.

如图所示,在正六边形ABCDEF中,AC与BD交于点O,求角AOB

∵正六边形∴∠ABC=120°且AB=BC,∴△ABC等腰,即∠BAC=∠BCA=30°,同理可得∠OBC=30°∴∠ABO=∠ABC-∠OBC=120°-30°=90°因此在△AOB中,∠AOB=1

如图AB圆O的直径,AC平分角DAB交圆O于点C,直线CD垂直AD,求证:直线CD是圆O的切线,若AD交圆O于点E,连结

证明:1.连接OC∵OA,OC是圆O的半径∴∠CAO=∠ACO①又已知AC平分角DAB交圆O于点C则∠CAD=∠CAO②由①②得∠CAD=∠ACO则OC//AD③∵直线CD垂直AD④∴由③④得直线CD

已知:如图①,在▱ABCD中,O为对角线BD的中点.过O的直线MN交直线AB于点M,交直线CD于点N;过O的另一条直线P

(1)证明:在平行四边形ABCD中,AD∥BC,∴∠PDO=∠QBO.∵∠DOP=∠BOQ,DO=BO,∴△DOP≌△BOQ.∴PO=QO.(2分)同理MO=NO.∵∠PON=∠QOM,∴△PON≌△