如图 点e是正方形abcd内,若三角形abe是等腰三角形,则角dce

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:05:13
如图 点e是正方形abcd内,若三角形abe是等腰三角形,则角dce
如图,已知正方形ABCD的面积为64,△ABE是等边三角形,且点E在正方形ABCD内.

正方形ABCD的面积为64∴边长=8以AC为轴做点D的对称点F易证  点F与点B重合所以  DP = BP所以  DP&

如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,

这题是做对称点以AC为轴做点D的对称点F易证  点F与点B重合所以  DP = BP所以  DP + 

E为正方形ABCD内一点且△EBC是等边三角形.求∠EAD的度数

∵ABCD正方形∴AB=BC∵△BCE是等边三角形∴BE=BC=AB,∠EBC=60°∴∠ABE=30°∵BE=BC=AB∴∠BAE=75°∴∠EAD=15°BE=BC=AB,所以△AEB是等腰三角形

*E是正方形ABCD内一点,三角形ABE是等边三角形,则角DCE=_.

∵△ABE是等边三角形∴∠ABE=60°∴∠EBC=∠ABC-∠ABE=30°∵BE=BC∴∠BCE=∠BEC=(180°-∠EBC)/2=75°∴∠DCE=∠BCD-∠BCE=15°

在正方形ABCD内一点E,如果三角形ABE是等边三角形,求角DEC的度数.

过E作EF⊥DC交DC于F∵△ABE是等边三角形∴EB=BC,∠ECB=60°∵正方形ABCD,∠BCD=90°∴BC=DC∴△ECD为等腰三角形∴∠DEC=∠EDC∵∠DCE=30°∴∠DEC=75

E为正方形ABCD内一点,三角形EBC是等边三角形,求角EAD的度数

15°∵△EBC是等边三角形,∴∠EBC=60°所以∠ABE=30°又BC=BE,BC=AB∴AB=BE∠BAE=∠BEA=1/2(180°-30°)=75°所以∠EAD=90°-75°=15°

正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,则PD+PE的最小值为

因为ABCD是正方形,所以D跟B关于AC对称.所以BP等于DP.所以PEPD=PEBP.要使PEBP最小.即B,P,E三点共线.PEBP=BE=AB=4,所以PEPD的最小值为4.

正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,则PD+PE的最小值多

连接PB,则PD=PB,那么PD+PE=PB+PE,因此当P、B、E在一直线的时候,最小,也就是PD+PE=PB+PE=BE=AB=4

如图,正方形ABCD的面积为12,三角形ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE

使P点是BE与AC的交点则可,这时PE+PD[(最小值)]=BE=AB=√(12)=2√(3),证明:连接BD,则AC是BD的垂直平分线,∴PD=PB,∴PD+PE=PB+PE=BE,在AC上任取异于

正方形ABCD面积为12 三角形ABC是等边三角形 点E在正方形ABCD内 在对角线AC上有一点P,使PD+PE的和最小

根号下12再问:能给详细的做法吗?再答:连接PB,PD=PB,所以PB+BE的最小值就是BE.

正方形ABCD的面积为10,三角形ABC是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最

有正方形ABCD的对称性可知PD=PB所以PD+PE=PB+PE当P为AC与BE交点时,PB+PE最小,且PB+PE=BE因为三角形EBC是等边三角形所以BE=BC=10所以PD+PE的最小值为10

正方形ABCD的边长为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,

d.12再问:请说明理由再答:再答:再答:再答:再答:再问:那个为什么DE'最短呢再答:纠正一下,be为最短路径的路径长。点p在ac上,就作d关于ac的对称点,又因ac为对角线、abcd为正方形,d的

有一个地方不懂如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P

因为对称所以PD+PE=PB+PE这样看没问题吧然后在△PBE中,两边之和大于第三边所以只有PB,PE在一条直线上才能使PB+PE最小因为P是任意一点所以这个时候P点应为BE与AC的交点.

如图所示,点E是正方形ABCD内一点.

这个问题已经有很多的现成回答了啊,提示:将△CBE绕B点旋转90°,得△BE'A,连接EE'       135°

如图,四边形ABCD是正方形,E是正方形ABCD内一点,F是正方形ABCD外一点,连结BE,CE,

如图,四边形ABCD是正方形,E是正方形ABCD内一点,F是正方形ABCD外一点,连结BE、CE、DE、BF、CF、EF.(1)若∠EDC=∠FBC,ED=FB,试判断△ECF的形状,并说明理由.(2

已知,如图P是正方形ABCD内一点,在正方形ABCD外有一点E,满足∠ABE=∠CBP,BE=BP,若PA:PB=1:2

如图,⊿EBP=∠EBA+∠ABP=∠CBP+∠ABP=∠ABC=90ºBE=BP  ⊿EBP等腰直角.∠EPB=45º  ∠APE=135

已知正方形ABCD的边长为1,线段EF//平面ABCD,点E,F在平面ABCD内正投影分别是A,B,且EF到平面ABCD

(1)连接BD由题意得∵EF平行于平面ABCD,平面EFBA交平面ABCD=AB,AB在平面EFBA上∴EA平行FB.EA平行于平面FBD∴∠BFD或其补角为EA与FD所成的角FB=√6/3BD=√2