如图 已知直线be a是be上的点 ad平行bc,ad平分角eac
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:12:41
证明:如图,过点E作EG∥AC交BC于G,则∠ACB=∠BGE,∠F=∠DEG,∵AB=AC,∴∠B=∠ACB,∴∠B=∠BGE,∴BE=GE,又∵BE=CF,∴GE=CF,∵在△CDF和△GDE中,
再答:以塔为原点建立平面直角坐标系,设直线y1过点ABC,y1=ax+b,(a
∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠3=90°-∠2,∠4=90°-∠1,∴∠3=∠4,∴AE=BE,∴BE=AE=CE=BC/2=5
抱歉!原题不完整,无法直接解答.请审核原题,追问时补充完整,
连接AN、CM,因为四边形ABCD为平行四边形,所以AB//CD,AD(AM)//BC(NC),所以角NEB=角NFC=角MFD,角MDC=角DCB=角ABN;又:BE=DF,所以三角形MDF全等于三
本题价值150分①、②、④三个正确结论的证明都很麻烦,实在不想写了再问:我给150,你写不写?再答:呵呵,算了,我帮帮你吧。财富也没什么用,你留着以后提问用吧我先写一个,那两个你稍微等一下(1)在AB
∠BPE=60按图3证明:AB=CA∠BAF=∠ACE=180-60=120AF=CF-CACE=BE-BCCF=BECA=BCAF=CE△BAF≌△ACE∠FBA=∠EAC∠FAP=∠EAC∠FAP
话说第一题.很简单.相似三角形概念.(1)点A和点F同在圆上,且都对应弦BC,所以角A=角F,CD垂直于AB,那么角DCB=角A,所以角DCB=角F,因此,三角形FCB相似于三角形CBG,所以BC/B
证明:(1)由菱形ABCD可知:AB=AD,∠B=∠D,∵BE=DF,∴△ABE≌△ADF(SAS),∴AE=AF;(4分)(2)连接AC,∵菱形ABCD,∠B=60°,∴△ABC为等边三角形,∠BA
证明:(1)∵ABCD是菱形,∴AB=AD∠B=∠D.又∵BE=DF,∴△ABE≌△ADF.(2)∵△ABE≌△ADF,∴AE=AF,∴∠AEF=∠AFE.
证明:连接BD交AC与O点(1分)∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,(2分)又∵AP=CQ,∴AP+AO=CQ+CO,即PO=QO,(2分)∴四边形PBQD是平行四边形.(2分)
取BC中点K连接MK、KNKM‖CE,KM=1/2CE∠AHG=∠NMKKN‖BD,KN=1/2BD∠AGH=1/2∠MNKKM=KN∠NMK=∠MNK∠AHG=∠AGHAG=AH
证明:(1)∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,又∵BE=DF,∴△ABE≌△ADF,∴AE=AF;(2)连接AC,∵AE垂直平分BC,AF垂直平分CD,∴AB=AC=AD.∵AB=BC
证明:易得∠DHE=∠CHF=60°(对顶角相等)∵AB∥CD∴∠EKG=∠DHF=60°∴∠EGK=180°-(∠EKG+∠KEG)=180°-90°=90°故△EKG是直角三角形.//------
解题思路:截图文字或公式内容字号应设置为四号及以上,图片长、宽要求解题过程:截图文字或公式内容字号应设置为四号及以上,图片长、宽要求,字数太多,答案见下图。
(1)∵AB=20,BC=8,∴AC=AB+BC=28,∵点A、B、C在同一直线上,M、N分别是AC、BC的中点,∴MC=12AC=14,NC=12BC=4,∴MN=MC-NC=14-4=10;(2)
(1)AB=AD,BE=AF,∠ABE=∠ADF,所以△ABE≌△ADF所以AE=AF(2)连接AC,BD,点E.F分别为BC.CD的中点,所以EF=1/2BD,又BD=√3AB,所以EF=√3/2A
(1)∠2=∠1+∠3.证明:如图1,过点P作PE∥l1,∵l1∥l2,∴PE∥l2,∴∠1=∠APE,∠3=∠BPE.又∵∠2=∠APE+∠BPE,∴∠2=∠1+∠3;(2)①如图2所示,当点P在线