如图 已知正方形abcd和正方形cefg的边长分别为10和5
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 16:22:46
(1)两个正方形重叠部分的面积保持不变;(2)重叠部分面积不变,总是等于正方形面积的14,即14×1×1=14,连接BE,CE,∵四边形ABCD和四边形EFGH都是正方形,∴EB=EC,∠EBM=∠E
如图,在三角形DCE中,有DE^2=CD^2+CE^2,因此,以DE为边的正方形DEMN即为所求的正方形.
连接BG两点以BG为边长画正方形即可.因为BC平方+CG平方=BG平方,
假设G为CD的中点,延长AD和EF交于H.那么三角形AHE减去三角形ADG,三角形EFG,正方形DHFG则可即108-36-18-36=18平方厘米
正方形IBGH为两个正方形面积和
证明:∵ABCD正方形,∴∠DOF=∠COE=90°,OD=OC,∴∠OCE+∠OEC=90°,∵DG⊥CE,∴∠ODF+∠OEC=90°,∴∠OCE=∠ODF,∴ΔOCE≌ΔODF,∴OE=OF.
【推荐方法:】其实,连接CF,因为∠BFP=45°,∠ANP=45°,所以PF∥AN,△ANB和△ANF同底等高,面积相等,等于大正方形面积的一半.12×12÷2=144÷2=72平方厘米小正方形的边
(1)连结OB,OC.易知OB=OC,∠BOC=90°,∠OBM=∠OCN=45°而∠EOG=90°∴∠BOM=∠BOC-∠EOC=∠EOG-∠EOC=∠CON∴△OBM≌△OCN(ASA)∴BM=C
如图 AC∥EG ∴D⊿AGE=S⊿CGE=6²/2=18 ﹙平方厘米﹚
连接CF,则CF//BD,(同位角相等,都等于45°,两直线平行)因为平行线间的距离相等所以三角形FBD与三角形CBD的面积相等,(等底等高)所以,阴影三角形BDF的面积=10×10/2=50(平方厘
不管CEFG多大,面积均为50cm2,以BD为三角形的底,因为CF‖BD,所以三角形的高始终是CF和BD的距离,因此.说明同底等高的三角形面积相等
设AE=3K,EC=4K,则AC=7k,在等腰RT三角形ADC中,解得AD,根据三角形AME相似于三角形DEC,求的比值
如图,首先熟悉勾股定理的几何证明.再延其思路找出图形裁剪线.
10×10÷2=100÷2=50(平方厘米);答:图中阴影(三角形BFD)部分的面积为50平方厘米.故答案为:50平方厘米.
这题只要证明N为AB中点,就可得出那2个结论可以先设MC=a,DC=2a,MD=根号5a我用:√5a来表示令NC与MD交点为P,则CP=2√5a/55分之2倍根号5可求出MP=√5a/5然后ΔMPC相
设AB长为1,AA'长为x那么,正方形ABCD的面积就是1,而A'B'C'D'的面积是A'D'的平方,根据勾股定理就可以知道A'B'C'D'的面积就是AA'的平方加上AD'的平方那么就能列式:x^2+
三角形ABC=三角形ADC,三角形AEF=三角形FGC..三角形AMQ=三角形CNP再问:就是不知道能不能不写过程,算了,反正也不想写==
解(1):因为ABCDAEFG是正方形所以∠BAD=∠EAG=90°AB=ADEA=EG因为∠BAD=∠BAE+∠EAD∠EAG=∠DAG+∠EAD所以∠1=∠2所以三角形BAE全等于三角形DAG所以
答案是50详细过程看图这里采用整体思想,无需求出小正方形的边长 有那步不明白请追问
(3)作EH垂直BD于点H,因为BE是角DBC的平分线,角BCD=90,所以,EH=CE,BH=BC.由(1)、(2)可知,BE=DF=2DG=2根号2.设AB=X,CE=Y,则DH=BD-BH=X(