如图 已知△abc中abac延长
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:37:28
证明:连接CE∵EF是△ABC的中位线∴EF‖BC且EF=1/2BC,AE=BE,AF=CF又,∵AB=AC,AB=DB∴FC=FA=1/2BDAE=AF∴∠AEF=∠AFE∴∠BEF=∠CFE∵EF
证明:∵AC=BC,∠ACE=∠BCD=90°,且AE=BD∴Rt△ACE≌Rt△BCD∴∠BDC=∠E∴∠E+∠CDF=∠BDC+∠CDF=180°又∠ACE=90°且四边形CDFE内角和为360°
∵AD为△ABC的角平分线,∴∠BAD=∠EAD,∵DE∥AB,∴△CED∽△CAB,∠BAD=∠EDA.∴∠EDA=∠EAD,∴EA=ED,∵AEEC=23,∴ED:EC=2:3,∴ABAC=ED:
证明:∵AB=AC,∴∠B=∠C,∵ED⊥BC,∴∠BDF=∠CDF=90°,∴∠B+∠BFD=90°,∠C+∠E=90°,∴∠BFD=∠E,∵∠BFD=∠AFE,∴∠E=∠AFE,∴AE=AF.
过A做AK⊥BCAD²=AK²+DK²AB²=AK²+BK²AD²-AB²=AK²+DK²-AK&s
∵ED⊥BC∴∠EDC=∠EDB=90°∴∠E+∠C=90°,∠B+∠BFD=90°∵AB=AC∴∠B=∠C∴∠BFD=∠E∴∠EFA=∠E∴AE=AF
证明;因为AB=Ac,所以角ABc=角AcB,因为ED丄Bc,所以角EDc=角EDB,所以三角形BDF相似三角形DCE,所以角BFD=角DEc,又因为角BFD=角EFA(对顶角相等),所以角EFA=角
1.(0,7)2.证明;以ed为对称轴作三角形edg和三角形edb关于ed对称同理以fd为对称轴作三角形fdh和三角形fdc关于fd对称由于角edf=角edb+角fdc=90°且bd=bc所以g,h为
有很多方法,简单的就是用梅涅劳斯定理:(AD/DB*(BF/FC)*(CE/EA)=1,∵AD=DB,∴CF:BF=CE:AE你可以这样:证明:过C作CG‖AB交DF与G,∵CG‖AB∴CF:BF=C
证明:∵∠DCB是△DCE的一个外角(外角定义)∴∠DCB>∠CDE(三角形的一个外角大于任何一个和它不相邻的内角)∵∠ADB是△BCD的一个外角(外角定义)∴∠ADB>∠DCB(三角形的一个外角大于
延长ED至点F,因为角ADF=角EDC,又因为角ADB>角ADF,所以角ADB>角CDE. 肯定对!
∵AB=3cm,AC=5cm,且ABAC=BDDC,∴BDDC=35,又∵BC=5.6,∴BD=5.6×38=2.1cm,∴DC=BC-BD=5.6-2.1=3.5cm.
证明:nbsp;延长CE到F,使EF=BC,连结DFnbsp;因为DC=DEnbsp;所以∠DCE=∠DECnbsp;所以∠BCD=∠FEDnbsp;在△DBC和△DFE中nbsp;BC=DF,∠BC
等腰△ADB中,∵顶角的外角∠ABC=50°,∴2∠D=50°,∠D=25°;同理可得:∠E=12∠ACB=35°.
因为在三角形abc中∠b=60°∠c=70°所以∠a=180°-60°-70°=50°因为bd=ba所以∠d=∠dab=1/2x(180°-∠abd)又因为∠abd=180°-∠b=120°所以∠d=
设∠AEF=∠AFE=∠BFD=X∠B=∠C∠B+∠C=∠BAE=180-2X∠B=∠C=90-X180-(90-X)-X=90=∠BDE兰州我知道你会再给点分的
∵∠BAC=130∴∠B+∠C=180-∠BAC=50∵AB、AC的垂直平分线分别交于BC于E、F∴AE=BE、AF=CF∴∠BAE=∠B、∠CAF=∠C∴∠EAF=∠BAC-(∠BAE+∠CAF)=
证明:我们只要证明∠B+∠E=90°就可以得到ED⊥BC了,∵AB=AC,AE=AF,∴∠B=∠ACB,∠E=∠AFE,∵∠B+∠BAC+∠ACB=180°,∠BAC=∠E+∠AFE,∴∠B+∠ACB
因为AB=AC所以∠B=∠C因为∠B+∠C+∠BAC=180°所以∠C+∠BAC/2=90°因为AE=AF所以∠E=∠AFE因为∠BAC=∠E+∠AFE所以∠AFE=∠BAC/2因为∠AFE=∠CFD
因为AB=AC且AB=AD所以AC=AD所以△ACD为等腰三角形又因为AE是△ACD的高所以AE垂直DC且使CE=ED点E为CD的中点又因为A点为线段BD的中点所以AE是△DBC的中位线且平行于BC所