如图 已知cd是圆o的直径,角EOD=78°
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 21:28:29
连接CO因为弦CD⊥直径AB所以CE=DE=1/2CD=8厘米在直角三角形COE中,根据勾股定理的:OE=√(CO²-CE²)=√(10²-8²)=6厘米希望采
过O作OF⊥CD∵AE=1,BE=5∴AB=AE+BE=1+5=6∴AO=AB/2=6/2=3∴OE=AO-AE=3-1=2∵∠AEC=45∴∠OEF=45∵OF⊥CD∴OF=OE×√2/2=√2∴C
作OH垂直DE于H,圆,CH=HDAE⊥CD,垂足为点E,bf⊥CD,OH垂直DE,OA=OB,梯形中位线,EH=HFDF=CE
1)因为AB为圆O的直径、CD是弦、且AB垂直CD所以弧BC=弧BD所以∠BCD=∠A因为OA=OC所以∠A=ACO所以∠ACO=∠BCD2)因为AB为圆O的直径、CD是弦、且AB垂直CD所以CE=D
连接OD,则OD=OC=DE∴角E=∠DOE=18°所以,∠ODC=∠OCD=36°(∠ODC是外角)∴∠AOC=72°(同上)
60度再问:求过程!再答:好吧!稍等再答:因为CO=DO,所以
显然圆O直径为8,半径为4过点O做OF垂直于CD,则点F平分CD在直角三角形OEF里,OE=OA-AE=半径-2=4-2=2,角DEB=30°,则OF=1在直角三角形OFD中OF=1,OD=半径=4勾
∴AB是直径,∴∠BCE+∠ACE=90°,∵AB⊥CD,∴∠CAE+∠ACE=90°,∴∠CAE=∠BCE,∵∠AFO=∠CEB=90°,OF=BE,∴ΔAFO≌ΔCEB(AAS).
(1)在△OCE中,∵∠CEO=90°,∠EOC=60°,OC=2,∴OE=1/2OC=1,∴CE=根号3/2OC=根号3,∵OA⊥CD,∴CE=DE,∴CD=2根号3;(2)∵S△ABC=1/2AB
∵CD⊥AB于点E∴根据勾股定理得(16÷2)²+(AO-4)²=(AO)²∴AO=10
E是OB中点,所以OE=1/2OB=1/2OC,由此可以得出∠OCE=30°,再用三角函数可以算出OC长2√3,那AB就是4√3,但你给的四个选项里没有.不是你打错了,就是卷子有问题.
连接OC∵CO⊥AB∴∠AEC=90°∵∠ACD=30°AE=2cm∴CE=2倍根号3∵AB⊥CD∴DE=2倍根号3设半径为X,则OE=X-2在RT△CEO中由勾股定理得:(x-2)+(2倍根号3)=
证明:作OH垂直CD于H,则CH=DH.又AE垂直CD,BF垂直CD,故AE∥OH∥BF.所以,EH/HF=AO/OB=1.(平行线截线段成比例定理)故EH=HF,EH-CH=HF-DH,即EC=DF
取CD的中点M,连接OM,OM是CD的弦心距,OM垂直于CD,AE垂直于CD,根据三角形相似,OM/AE=OP/AP=OP/(10+OP),整理得OP=10OM/(AE-OM)OM垂直于CD,BF垂直
证明:在三角形ABC中,AB是直径,C是圆上的点所以角ACB=90,即BC垂直于ACOF垂直AC所以OF平行BC∵AB⊥CD∴CE=1/2CD=5√3cm.在直角△OCE中,OC=OB=x+5(cm)
连接OC,则OB=OC∴∠OBC=∠OCB∵∠EAC=∠D=60°∴∠ABC=60°∴∠OBC=∠OCB=∠BOC=60°,∠AOC=120°∴BC=OB=OC∵BC=4∴OB=4∴AB=8∴⌒AC=
证明:连接MB∵M为圆上一点,∴∠AMB=∠FMB=90°∴∠AMD+∠DMB=∠FMC+∠CMB又∵B为弧CD的中点∴∠DMB=∠CMB∴∠AMD=∠FMC再问:谢了
建议:\x09(4)多行单条件:
过D作DF⊥BF交BC的延长线于F∵四边形ABCD是园O内接四边形∴∠DAB+∠DCB=180°∵∠DCF+∠DCB=180°∴∠DAB=∠DCF∵DE⊥AB,DF⊥BF∴∠DEB+∠DFB=90°∴