如图 已知cd垂直于ab,DE平行BC,FG垂直AB
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 21:01:19
证明:∵∠ACB=90°,CD垂直AB于D∴∠ADC=90,∵∠DAC=∠CAB∴△DAC∽△CAB,则BC:AC=DC:DA∵在RT△ADC中,DE⊥AC∴DC²:DA²=CE:
第一题的确是有问题的,反证如下:我们可以在CD上任取一点M,并作MN垂直于AB连接ME,则如果原命题能够成立即:DE的平方=AE*CE,则同理也可证明DE的平方=AE*ME(所有条件是一样的),这样就
△ABF和△DEC.有2边相等,且是直角三角形,所以.2个三角形相似.所以另外一边也相等,也就是AF=CE其次因为相似,所以∠C=∠A所以AB//CD
图是?再问: 再答:记得采纳
∵EF⊥AB∴∠AEF=90°∵DG⊥BC,AC⊥BC∴DG∥AC∴∠2=∠DCA(两直线平行,内错角相等)∵∠1=∠2∴∠1=∠DCA∴EF∥CD(同位角相等,两直线平行)∴∠AEF=∠ADC=90
(1)证明:连接OE,∵DE∥OA,∴∠COA=∠ODE,∠EOA=∠OED,∵OD=OE,∴∠ODE=∠OED,∴∠COA=∠EOA,又∵OC=OE,OA=OA,∴△OAC≌△OAE,∴∠OEA=∠
思路:Rt△DCN≌Rt△DCM推出DN=DM连结EN,设DE、AC交于点ODN=DM,DM=BE,BE=AE∴AE=DN∠DON=∠AOE,∠DNO=∠AEO=90°∴Rt△DON≌Rt△AOENO
证明:∵DE⊥AC,DF⊥BC∴∠CED=∠CFD=90∵CD=CD,DE=DF∴△CED≌△CFD(HL)∴∠ACD=∠BCD∵CD⊥AB∴∠ADC=∠BDC=90∵CD=CD∴△ACD≌△BCD(
这里有详细解析.再问:可我没那个账号,看不了解析,你帮我转过来吧,谢谢再答:1)取CE中点P,连接FP、BP,∵PF∥DE,且FP=1又AB∥DE,且AB=1,∴AB∥FP,且AB=FP,∴ABPF为
解题思路:根据题意,由平行线的性质和判定的知识整理可求解题过程:
证明:∵DE⊥AC,BF⊥AC∴∠CED=∠AFB=90º又∵AB=CD,BF=DE∴Rt⊿ABF≌Rt⊿CDE(HL)∴AF=CE∠BAF=∠DCE∴AB//CD【内错角相等】
BC⊥AC理由如下∵CD⊥ABFG⊥AB∴CD∥FG∴∠BFG=∠BCD∵∠CDE=∠BFG∴∠CDE=∠BCD∴DE∥BC∵DE⊥AC∴BC⊥AC
在直角三角形AED.CFB中,利用邻边,斜边证全等,的AE=CB,且AF=AE+EF,CE=CF+EF,可得答案
证明:因为DG垂直于AC所以∠2+∠ACD=90度因为AC垂直于BC所以∠DCB+∠ACD=90度所以∠2+∠ACD=∠DCB+∠ACD所以∠2=∠DCB又因∠1=∠2所以∠1=∠DCB所以DC平行E
ef交直线cd于点n由已知ef垂直于ab知∠emb=90又因为ab//cd得∠mnd=90(两直线平行同位角相等)所以ef垂直于cd
证明:∵∠E=∠DFC=90°,BD=CD,BE=CF.∴Rt⊿DEB≌Rt⊿DFC(HL).∴DE=DF.故:AD平分∠BAC.同理可证:Rt⊿AED≌Rt⊿AFD(HL).∴AE=AF.∴AB+A
证明:∵AB∥CD∴角ABD+角BDC=180°∵BE平分角ABD,DE平分角BDC∴角EBD+角BDE=1/2角ABD+1/2角BDC=90°∴角E=180°-(角EBD+角BDE)=90°∴BE垂
证明:∵DE⊥AC,BF⊥AC∴∠CED=∠AFB=90º又∵AB=CD,BF=DE∴Rt⊿ABF≌Rt⊿CDE(HL)∴AF=CE∠BAF=∠DCE∴AB//CD【内错角相等】