如图 在圆o中 c是弧AB=2弧AC,那么
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:00:49
直角三角形斜边上的中线等于斜边的一半,用这一个结论就可以证明你的两个问题.这个结论无需再证明.第一个问题,CO为直角三角形ACB斜边AB的中线,故CO=AB/2=AO=BO,则证明O到A、B、C,3点
连结OC交AB于点DC为弧AB的中点,可得CO⊥AB设圆的半径为r对于三角形OAD,有OD^2+AD^2=OA^2对于三角形BCD,有BD^2+CD^2=BC^2DA=DB,可得OA^2-OD^2=B
连接OC,交AB于D,连接OB∵C是弧AB的中点∴OC⊥AB(平分弧对直径垂直于弧所对的弦)则OD=1,设OB=OC=r,CD=r-1DB²=OB²-OD²DB²
∵AB=AC∴∠ABC=∠C=2∠A∵∠ABC+∠A+∠C=180°∴5∠A=180°∠A=36°∠ABC=∠C=23A=72°∵BC是圆的切线∴∠CBD=∠B=36°∴∠ABD=∠ABC-∠CBD=
⑴设弧CAD为劣弧.∵AB⊥CD,∴∠OBC=∠OBD,∵OB=OC=OD,∴∠OCB=∠OBC=∠ODB=∠OBD,∵∠P+∠CBD=180°(圆内接四边形对角互补),而∠COB+∠COB+∠OCB
因为角CPD为60度,所以角COB为60度(圆心角是圆周角2倍),而AB与CD垂直,所以CE/OE=tan(60度)CD=2CE=8倍根号3
连接线段OC,线段BD,OC与BD相交于点Q,因为C是弧BD的中点,且O是圆心,所以,OC垂直BD,且平分BD,线段BD中点是Q,又,BC=CP,故QC是三角形BDP的中位线,所以QC平行DP,又QC
(1)连接OD、OE,∵⊙O切BC于E,切AC于D,∠C=90°,∴∠ADO=∠BEO=90°,∠ODC=∠C=∠OEC=90°,∵OE=OD=2,∴四边形CDOE是正方形,∴CE=CD=OD=OE=
由AP·PB,联想到相交弦定理,于是延长CP交⊙O于D,于是有PC·PD=PA·PB.又根据条件OP⊥PC.易证得PC=PD问题得证.
作OD垂直于BC,垂足为D,当圆O与直线BC相切时,OD=r=1/2,因为角B=60度所以BO=ODsinB=(根号3)/4.因为BO=a,所以当a=(根号3)/4时,直线BC与圆O相切,当0
因为CD和AB是垂直的,AB是直径平分CD所以2∠COB=∠CPB,2∠DPB=∠DOB因为弧BD=弧CB,所以∠COB=∠DOB因为2∠CPB=2∠BPD=∠COB所以∠CPD=∠COB∠CP’D+
连DO、CO、AO,∠ACB=90°,AD=BD,根据直角三角形斜边上的中线等于斜边的一半,可得DA=DC,又DO=DO,OA=OC,因此△DOA≌△DOC,∴∠DCO=∠DAO=90°,∴CD是切线
1由题很容易可以得出CO=DO连接MO,NO,MO=NO在ΔMCO和ΔNDO中,由勾股定理可以得出MC=ND所以ΔMCO≌ΔNDO所以∠MOC=∠NOD所以弧AM=弧BN(因为弧所对的圆心角相等,弧就
连接AD∵D是弧BE的中点∴弧BD=弧DE∴∠BAD=∠CAD(等弧对等角)∵直径AB∴∠ADB=90∴AC=AB(三线合一)∴∠C=∠ABC=(180-∠BAC)/2=(180-40)/2=70数学
(2009•路北区三模)如图:AB为⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=∠A.(1)求证:CD是⊙O的切线;(2)如果:∠D=30°,BD=10,求:⊙O的半径.&
选C画出图后A,B,C三点连成的是三角形,弧AC=弧BC,AC=BC,三角形两边之和大于第三边∴a
:连接AC,BC因为点C为弧AB的中点所以弧AC=弧BC所以AC=BC因为OA=OBOC=OC所以三角形OAC和三角形OBC全等(SSS)所以角AOC=角BOC=1/2角AOB因为OA=OB所以角OA
/>∵C是AB的中点∴OP⊥AB【垂径定理逆定理:平分弦(除直径外的弦)的直径垂直于弦】∵AP是⊙O的直径∴∠OAP=90°∵∠P=30°∴OP=2OA=4∵∠OAC=∠P=30°(同余角∠AOC)∴