如图 在四边形oacb中BA∥AC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 16:34:45
设角ABD=CBD=x,利用正弦定理得到:BD/sinA=AD/sinx;BD/sinC=CD/sinx.所以sinA=sinC则有A=C或者A+C=180°.当A=C时候,则有三角形ABD与三角形B
证明:∵C为AB的中点,OC为半径,∴PA=PB,AB⊥OC,∵AP=12AB=32AO,∴OP=AO2−AP2=AO2−34AO2=12OA=12OC,∴PC=12OC,即OP=PC,∴四边形OAC
四边形CDEF的周长=CD+EF+FC+DE因为CD=根号下(BC方+BD方)=根号下13 EF=2所以四边形CDEF
∵∠AOB=120°,弧AC=弧BC,∴∠COA=∠COB=60°,∵OA=OC=OB,∴ΔOAC与ΔOBC是等边三角形,∴OA=OB=AC=BC,∴四边形OACB是菱形.
题目中C是短弧AB的中点证明:因为C是弧AB的中点所以弧AC=弧BC所以AC=BC∠AOC=∠COB(在同圆或等圆中,如果①两个圆心角,②两条弧,③两条弦中,有一组量相等,那么它们所对应的其余各组量都
解题思路:在BC上取点E,使BE=BA,连接DE,构造全等三角形进行证明解题过程:
(1)如图,作点D关于x轴的对称点D',连接CD'与x轴交于点E,连接DE.(1分)若在边OA上任取点E'(与点E不重合),连接CE'、DE'、D'E'.由DE'+CE'=D'E'+CE'>CD'=D
设点E的坐标为(x,0)则点F的坐标为(x+2,0),C为(0,根号7),D为(3/2,2分之根号7)边CD=根号下(3/2的平方+(2分之根号7)的平方)=2(其实D为矩形的中心)边CE=根号下(x
过D作DF⊥BC于F,作DE⊥AB,交BA的延长线于E,(∵BC>BA)∵AD=DC,BD又是∠ABC的角平分线∴Rt△DEA≌Rt△DFC∴∠DAE=∠C∵∠DAE+∠BAD=180º∴∠
因为BC>BA,可在BC上取BE=BA,连接DE则⊿EBD≌⊿ABD,得ED=AD=DC,且∠BED=∠A,⊿DEC中,∠DEC=∠C,那么∠A+∠C=∠BED+∠DEC=180°.
证明:做DE⊥BA于E(在BA延长线上)做DF⊥BC与F因为BD平分∠ABC,所以DE=DF又因为AD=DC,所以△ADE≌△CDF【直角三角形全等条件:斜边及一直角边对应相等的两个直角三角形全等(H
(1)三角形DAF内角和∠DAF+∠F+∠ADF=∠DAF+2∠F=〖180〗^0;即∠DAF+2∠F=〖180〗^0(2)三角形BCE外角∠CBF=∠E+∠BCE=2∠E;已知∠ADF=∠F;由平形
在BC取E使BE=ABBE=AB,BD=BD,BD平分∠ABCASA三角形全等,有AD=DE=CD,∠A=∠DEBAD=DE=CD,∠C=∠DEC.∠A=∠DEB∠A+∠C=180°
做DE⊥BA于E(在BA延长线上),做DF⊥BC与F∵BD平分∠ABC∴DE=DF又AD=DC∴△ADE≌△CDF(HL)【直角三角形全等条件:斜边及一直角边对应相等的两个直角三角形全等(HL)】∴∠
证明:连OC,如图,∵C是弧AB的中点,∠AOB=l20°∴∠AOC=∠BOC=60°,又∵OA=OC=OB,∴△OAC和△OBC都是等边三角形,∴AC=OA=OB=BC,∴四边形OACB是菱形.
证明:做DE⊥BA于E(在BA延长线上)做DF⊥BC与F因为BD平分∠ABC,所以DE=DF又因为AD=DC,所以△ADE≌△CDF【直角三角形全等条件:斜边及一直角边对应相等的两个直角三角形全等(H
证明:在BC上截取BE=BA∵∠ABD=∠EBD,BD=BD∴△BAD≌△BED∴DA=DE,∠A=∠BED∵AD=CD∴DE=DC∴∠C=∠DEC∵∠BED+∠DEC=180°∴∠A+∠C=180°
在BC截取BE=AB在三角形ABD和EBD中因为ABD=EBDAB=BEBD=BD所以ABD和EBD全等所以AD=DEBED=A又因为AD=CD所以DE=DC所以DEC=C因为BED+DEC=180所
从点D向线段BC、AB,做垂线,交AB于点E,交BC于点F因为BD平分∠ABC,所以DE=DF因为直角三角形AD=CD,DE=DF,所以直角三角形AED和三角形CFD全等所以角C=角EAD因为角EAD
1.过D做BA的垂线,于BA延长线交于N;过D做BC垂线,于BC交于H因为D在∠ABC角平分线上所以DM=DH又因为DA=DC,所以三角形DAM全等于三角形DCH所以∠C=∠MAD因为∠MAD+∠BA