如图 在三角形abc中线ad,be交于点g,则Sabg:Sbdg=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 18:03:16
如图 在三角形abc中线ad,be交于点g,则Sabg:Sbdg=
如图,AD是三角形ABC的中线,求证

证明:∵三角形任意两边之和大于第三边∴AD+BD>AB,AD+DC>AC两式相加得:2AD+BD+DC>AB+AC∵D是BC中点∴2BD=BD+DC∴2AD+2BD>AB+AC∴AD+BD>二分之一(

如图在三角形abc中,ad是bc边上的中线,求证ad小于2分之1(ab+ac)

如图,将三角形ABC绕D点旋转180度得平行四边形ABA'C∵在△ABA'中AB+BA' >AA'     

已知如图,三角形ABC中角B=2角C,BC=2AB,AD是中线

因为BC=2AB,AD是中线所以AB=BD又因为角B=2角C所以AD=DC,即AB=AD所以三角形ABD是等边三角形

如图,在三角形ABC中,AD是BC边上的中线,BE是三角形中AD边上的中线,若三角形ABC的面积是24,求三角形ABE的

连接CE∵AD是三角形ABC的BC边上的中线∴S△ADB=S△ADC=1/2S△ABC=1/2×24=12∵E是AD的中点∴S△BEA=S△BED=1/2S△ADB=1/2×12=6S△CEA=S△C

如图,在三角形ABC中,AB=3,AC=5,AD是边BC上的中线,AD=ED=2,求三角形ABC面积.

因为三角形CED与ADB为直角三角形又AD=DE,CD=DB根据直角三角形斜边直角边定理三角形CED与ADB全等在直角三角形ACE中CE^2=5^2-4^2=3^2,所以CE=3,所以AB=CE=3三

如图,已知在三角形ABC中,AD是高,CE是中线,DC=BE,求证角B=2角BCE

证明:连接DE∵DE是中线,△ABD为Rt△∴DE=BE=AE∵∠B=∠BDE∵DC=BE∴DE=DC∴∠DCE=∠DEC∵∠BDE=∠DCE+∠DEC∴∠BDE=2∠BCE

如图,在三角形ABC中,AD、BE、BF分别为三角形ABC、三角形ABD、三角形BCE的中线,且三角形ABC的面积为12

结果是3△BEC面积是△BAC的一半,即是6(两三角形同底BC,可分别过A、E向BC做高,E为中点,则高的比是2:1,面积同高比)△BEF面积=△BCF面积=½△BEC面积=3(由B做三

、如图在三角形ABC中,AD是中线,

延长AD到E,使DE=ADABD全等于CEDCE=3AE=4AC=5所以角AEC=90度DE=2CB=2CD=2倍的根号13

如图 在三角形abc中 ad be是两条中线 求s三角形edc:s三角形abc

由在△ABC中,AD,BE是两条中线,可得DE是△ABC的中位线,即可得DE∥AB,DE=AB,继而证得△EDC∽△ABC,然后由相似三角形面积比等于相似比的平方,求得答案.∵在△ABC中,AD,BE

如图13,AD是三角形ABC的中线,分别过点C,B作中线AD及延长线的垂线CE,BF,垂足分别为

∵AD是△ABC的中线∴BD=BC∵CE⊥AD,BF⊥AD∴∠CED=∠BFD=90°又∵∠CDE和∠FDB互为对顶角∴∠CDE=∠FDB在△CDE和△BDF中∵BD=BC,∠CED=∠BFD,∠CD

如图,AD为△ABC的中线,BE为三角形ABD的中线.

∵EG‖BC∴△AEG≌△ABC又∵AE:AB=1/2∴AG:AC=1/2即G是AC中点所以DG‖AB∴△CDG≌△CAB∴S△CDG:S△CAB=(CD:CB)²=(1/2)²=

如图,在三角形AC中,AD、BE、BF分别为三角形ABC、三角形ABD、三角形BCE、的中线,且ABC面积12,求三角形

图呢再问: 再答:12除以2再除以2=3(因为是中点),是三角形ABEBEDAECEDC的面积;3乘2=6,是三角形BEC的面积,又因为BF是CE的中点,也就是三角形BCE面积的一半;6除以

已知,如图,在三角形ABC 中,AD是高CE是AB边上的中线,且DC等于BE,求证,角B等于角2角BCE.

作EF∥BC交AD于F连DE∵AE=EB∴AF=DF又AD⊥BCEF∥BC即EF⊥AD∴△AEF≌△DEF∴∠AEF=∠BEF∵DE=DC∴∠DEC=∠DCE∵EF∥BC∴∠DCE=∠FECAE=DE

如图,在三角形ABC中,AD BE BF分别为三角形ABC三角形ABD三角形BCE的中线,三角形ABC面积12,求三角形

ADBEBF分别为三角形ABC三角形ABD三角形BCE的中线三角形BCD的面积=三角形ABC的面积的个一半=6三角形BCE的面积=三角形BCD的面积的个一半=3三角形BEF的面积=3

如图,在三角形ABC中,向量AB=a,向量BC=b,AD为边BC上的中线,G在中线AD上,且AG=2GD,用a,b分别表

向量CA=向量BA-向量BC=a-b向量AD=向量AB+向量BD=-a+1/2b向量GD=1/3向量AD=-1/3a+1/6b(重心到顶点的距离与重心到对边中点的距离之比为2:1)