如图 在三角形abc中,∠a=90度,d,e分别是边ac,bc上的点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 06:06:23
如图 在三角形abc中,∠a=90度,d,e分别是边ac,bc上的点
如图,在三角形ABC中,AB=AC=2,∠A=150度,则三角形ABC的面积为

过B作BD⊥CA延长线于D,∵∠BAD=180°-150°=30°,AB=2,∴BD=1,∴S△ABC=AC×BD÷2=2×1÷2=1.

相似三角形:如图,在等腰RT三角形ABC中,AB=1,∠A=90°

因为等腰RT三角形ABC中,AB=1,∠A=90°,∠C=45度故:AC=AB=1,∠ABE+∠AEB=90度因为点E为腰AC的中点,故:AE=EC=1/2AC=1/2因为EF⊥BE故:∠CEF+∠A

已知如图,在三角形ABC中,∠ACB=90°,将三角形ABC绕点C按顺时针方向旋转得三角形A'B

这图只有几粒米大.也无法放大.重新上传大一点图,亲

如图 在三角形abc中,已知∠b=1/2∠a=1/3∠c,ab=8cm,求证:三角形abc为直角三角形

设角b为x,则a为2x,c为3x,所以6x=180度,所以角b=30度,角c=90度,所以三角形abc为直角三角形

如图,在三角形ABC中,CD平分三角形ABC的外角∠ACE ,BD、CD相交于点D,试说明∠A=2∠D

由CD平分∠ADE,BD平分∠ABC(你落下了这个条件)∴∠ACD=∠ECD.由∠ACE=∠A+∠ABC(1)∠DCE=∠DBC+∠D(2)(2)×2得:∠ACE=∠ABC+2∠D(3)(3)-(1)

如图,在三角形ABC中,

http://i159.photobucket.com/albums/t145/l421013/MATH2/CM5.png

如图,在Rt三角形ABC中...

证明:连结DM∵AD=BD,M为AB中点∴DM⊥AB∴∠DME+∠AME=90°∵ME⊥AC∴∠A+∠AME=90°∴∠DME=∠A又∵∠DEM=∠C=90°∴△MDE∽△ABC∴DE:BC=ME:A

如图在三角形abc中 

再答:看得懂吗?再问:嗯,我还有一道再答:稍等再答:再答:再答:请注意我标的角1的位置再问:给了

如图,在三角形abc中,ab=bc=ca,角a=角abc=角acb,在三角形abc的顶点a,c处各有一只小蚂蚁,

1:因为蚂蚁速度相等,运动时间相同,故AD=CE;由AC=BC,角A=角ACB;所以边角边证两三角形全等.2:由第一问得,三角形ACD全等于三角形CBE,故角ACD=角CBE;故角DCB+角CBE=角

已知,如图,在三角形ABC中,

∵∠EAC是外角∴∠EAC=∠B+∠C∵∠B=∠C∴∠EAC=2∠C∵AD平分∠EAC∴∠DAC=2分之∠EAC=∠C∴AD平行于BC(内错角相等,两直线平行)

如图,在三角形ABC中,BD平分∠ABC,且∠A=二分之一∠ABC,∠C=∠CDB,求∠A的度数

∠A+2∠A+2∠A=180,所以∠A=36度再问:能不能详细一点,用因为所以再答:设角ABD=角DBC=x,,因为BD平分∠ABC,且∠A=二分之一∠ABC所以角A=x,角BDC=2x,角C=2x所

已知:如图,在三角形ABC中,

用三角形内角和等于180度来计算角A+角ABC+角C=5角A=180度角A=36度角C=角ABC=2角A=72度角DBC=角C/4=18度又角C+角DBC+角BDC=180度角BDC=180度-72度

如图,在三角形ABC中,点D是三角形ABC内的一点,求证:∠CDB=∠A+∠ACD+∠ABD

证明:根据三角形内角和为180°可得:在三角形CBD中,∠CDB=180°-∠DCB-∠CBD在三角形ABC中,∠A+∠ACD+∠DCB+∠CDB+∠ABD=180°∴∠DCB+∠CBD=180°-∠

如图,在三角形ABC与三角形DEF中,∠A=∠D,AB/DE=AC/DF,求证:三角形ABC相似于三角形DEF

两边对应成比例,夹角相等,已经相似了.再问:按其他证明方法证明再答:还有一种方法就是把△DEF搬到△ABC上进行证明了,∵∠A=∠D,把△DEF搬到△ABC上,使A与∠D重合,且DE放在AB上,自然D

如图,在RT三角形ABC中

半径r,AO:AB=OE:BC(4+r):(4+2r)=r:6r=-3舍去或r=4元0面积=16π

如图,在三角形ABC中,角A=150度,AB=20cm,AC=9,则三角形ABC的面积等于多少?

S=1/2*AB*AC*sin150°=45cm^2sin150°=sin(180°-30°)=sin30°=1/2

如图,在三角形ABC中,∠A=80度,⊙O截三角形ABC的三条边所得的弦长都相等,求∠BOC的度数.

因为圆O截三边所得的弦长都相等,因此由勾股定理得,O到三边的距离相等.过O作三边的垂线,利用三角形全等,容易证得∠ABO=∠OBC,∠ACO=∠OCB,因此∠BOC=180°-(∠OBC+∠OCB)=