如图 在三角形abc中 角b大于角c
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:11:54
∵CD⊥AE∴∠B+∠BAE=∠AEC∠B+∠BAE∵AE是∠BAC的角平分线∴∠EAC=∠BAE∴∠ACD>∠B
⑴可延长AD到F,使DF=AD,在△ABF中,由三边关系即可得出结论;⑵由△ADC≌△FDB,得∠CAD=∠F,在△ABF中,由边的大小关系即可得出角之间的关系;⑶同⑵,由角的关系亦可求解边的大小./
因为角a=角DBC=EFB=E所以全等(SAS)
∵AD平分∠BAC,BD⊥AB,DF⊥AC∴BD=DF(角平分线上的点到角两边距离相等)∵DF⊥AC∴∠DFC=90°在Rt△BDE和Rt△FDC中BD=DFED=CD∴Rt△BDE≌Rt△FDC∴B
∠CBD+∠C=∠ADB∠CBD=2∠C=2∠CBD又因为∠A=∠A所以▲ADB≌▲ABC所以AD:AB=AB:CD=BD:BC
如果是下面图.角BAE=1/2角BAC=(180-角B-角C)/2 角BEA=180-角B-角BAE 角AE
因为AC=AD所以角ACD=角ADC因为角ACD+角BCD=角C=40度角ADC=角BCD+角B所以40-角BCD-角BCD=角B所以角B=40-2角BCD因为BC=BE所以角BCE=角BEC因为角B
证明:过A作AD垂直BC于D,在三角形ABD与三角形ACD中,角B=角C,角ADB=角ADC=90度,AD=AD,所以三角形ABD全等于三角形ACD所以AB=AC
1、∠DAE=(∠C-∠B)/2证明:∵∠BAC=180-(∠B+∠C),AE平分∠BAC∴∠CAE=∠BAC/2=90-(∠B+∠C)/2∵AD⊥BC∴∠ADC=90∴∠CAD+∠C=90∴∠CAD
利用三角形的内角和可以求出:∠BAC=180°-∠B-∠C=180°-76°-36°=68°希望我的回答能帮助你,在我回答的右上角点击【采纳答案】,
试探究∠EFD、∠B与∠C的关系;因为FD⊥BC所以,∠EFD=90°-∠FED而,根据三角形的外角等于不相邻的内角之和,有:∠FED=∠B+∠BAE而,已知AE为∠BAC的平分线所以,∠BAE=∠A
证明:∵∠B=∠D=90°,BC=CD,AC=AC∴△ABC≌△ADC(HL)
CD是AB边上的高Rt△ADC中∠A+∠ACD=90°Rt△BDC中∠B+∠BCD=90°所以,∠A+∠ACD=∠B+∠BCD即,∠A-∠B=∠BCD-∠ACD又,CE平分∠ACB即,∠ACE=∠BC
在AB上取一点E,使得AE=AC,连接EP,那么在三角形AEP和三角形ACP中AP=AC角EAP=角CAPAP=AP三角形AEP和三角形ACP全等.角ACP=角AEP为锐角,那么角BEP为钝角,所以B
BD=DE;理由:过P作PF⊥BD于F,四边形DFPE为矩形,PF=DE,∵∠ABD+∠DBC=90°,∠A+∠ABD=90°,∴∠A=∠DBC.在△ABD和△BPF中,{∠ADB=∠BFPAB=BP
【题目】如图,已知AD是△ABC的角平分线(∠ACB>∠B),EF⊥AD于P,交BC延长线于M,(1)如果∠ACB=90°,求证:∠M=∠1;(2)求证:∠M=1/2(∠ACB-∠B)【分析】(1)先
A>Bsinx在[0,π/2]上单调增加如果A,B都是锐角sinA>sinB如果A是钝角,B是锐角因为π>A>π/2所以π/2>π-A>0A+BBsin(π-A)>sinB即sinA>sinB所以A>
延长BC至D,使CD=AC,连接AD那么∠D=∠CAD又∠ACB=∠D+∠CAD=2∠D∠ACB=2∠ABC∴∠D=∠ABC∴AD=AB在△ACD中,AC+CD>AD∴2AC>AB