如图 在三角形abc中 ab ac 以ac为直径的圆O交AB于点D,交BC与点E

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:36:53
如图 在三角形abc中 ab ac 以ac为直径的圆O交AB于点D,交BC与点E
如图.在三角形ABC中,角C=90度AC=8 AB=10点P在AC上AP=2 若圆O的圆心在线段BO上 圆O与ABAC都

做辅助线AO思路:S△AOP+S△AOB=S△ABP步骤:1由直角三角型定理求BC边长.BC=6,不会算就不要学了.2设园半径为r,列方程AP*r*0.5+AB*r*0.5=AP*BC*0.5代入数据

如图在Pt三角形abc中,角abc等于九十度分别以abac为边向三角形abc外作正方形ABDE 和

延长AH于I,使IG平行于BC∵IG平行于BC,∠ABC=90°∴∠GIA=90°∵∠IAG+∠BAC=90°,∠BAC+∠ACB=90°∴∠IAG=∠ACB在△ABC与△GIA中∵AC=AG,∠GI

如图,在三角形ABC中,

http://i159.photobucket.com/albums/t145/l421013/MATH2/CM5.png

如图分别以ABAC为腰在三角形ABC的形外作两个等腰直角三角形三角形ABD和ACE

BE=DC且BE⊥DC∵∠BAD=∠CAE=90°∴∠BAD+∠BAC=∠CAE+∠BAC即∠DAC=∠BAE又∵AD=ABAC=AE∴△DAC≌△BAE∴BE=CD∠DCA=∠BEA∵∠CAE=90

如图已知三角形ABC中BC=60BC边上的高AH=40 矩形DEFG的顶点DE在BC上顶点GF分别在边ABAC上 设EF

相似三角形对应边上高的比等于相似比.EF=X,AM=40-X,∵DEFG是升天,∴GF∥BC,∴ΔAGF∽ΔABC,∴AM/AH=GF/BC,(40-X)/40=GF/60,GF=3/2(40-X)=

如图,在Rt三角形ABC中...

证明:连结DM∵AD=BD,M为AB中点∴DM⊥AB∴∠DME+∠AME=90°∵ME⊥AC∴∠A+∠AME=90°∴∠DME=∠A又∵∠DEM=∠C=90°∴△MDE∽△ABC∴DE:BC=ME:A

如图在三角形abc中 

再答:看得懂吗?再问:嗯,我还有一道再答:稍等再答:再答:再答:请注意我标的角1的位置再问:给了

已知,如图,在三角形ABC中,

∵∠EAC是外角∴∠EAC=∠B+∠C∵∠B=∠C∴∠EAC=2∠C∵AD平分∠EAC∴∠DAC=2分之∠EAC=∠C∴AD平行于BC(内错角相等,两直线平行)

如图三角形ABC中,三角形ABC为锐角三角形边ABAC的垂直平分线交与点O连接OBOC求证∠BOC=2∠A

证明:连接并延长AO交BC于点D,记∠BAO为∠1,∠CAO为∠2,∠BOD为∠3,∠COD为∠4则:∠3=∠1+∠ABO∠4=∠2+∠CAO∵AO=BO=CO∴∠1=∠ABO∠2=∠CAO∴∠3=∠

已知:如图,在三角形ABC中,

用三角形内角和等于180度来计算角A+角ABC+角C=5角A=180度角A=36度角C=角ABC=2角A=72度角DBC=角C/4=18度又角C+角DBC+角BDC=180度角BDC=180度-72度

如图在三角形ABC中DE分别是ABAC的中点廷长DE到点F使EF=DE连接CF若AB=12 BC=10 求四边形BCFD

因为:D.E分别是AB,AC的中点,AB=12BC=10所以:DB=6DF=10BCFD的周长=(6+10)*2=16*2=32

如图9,已知在三角形ABC中,𠃋BAC=130度,ABAC的垂直平分线分别交于BC于E,F,求ƒ

∵∠BAC=130∴∠B+∠C=180-∠BAC=50∵AB、AC的垂直平分线分别交于BC于E、F∴AE=BE、AF=CF∴∠BAE=∠B、∠CAF=∠C∴∠EAF=∠BAC-(∠BAE+∠CAF)=

如图,在RT三角形ABC中

半径r,AO:AB=OE:BC(4+r):(4+2r)=r:6r=-3舍去或r=4元0面积=16π

如图三角形abc中ab等于ac,点pq分别在abac上,且bc等于cp等于pe等于aq求角a的度数.

哪来的pe呀,图上再问:bc等于cp等于pq等于aq再问:再问:再问:在不再答:在再问:知道不?再答:等下,现在没笔再问:好了吗?再问:在不在再问:我赶时间再问:还要看书再答:现在在做,你先看书再问:

如图在三角形ABC中

纳尼,上图再答:????

如图,在Rt三角形ABC中,

求的应该是BN+MN的最小值吧 过点B作BO⊥AC于O,延长BO到B',使OB'=OB,连接MB',交AC于N,此时OB'=MN+NB'=MN+BN的

如图:在三角形ABC中,AB

倍长AD到E,AD=DE连接CE三角形CDE全等于三角形BDA(根据边角边定理来证明这个结论)对应边相等,对应角相等,则CE=AB,角DEC=角DAB三角形ACE中CE=AB所以角DAC所以角DAC