如图 在△abc中 角bac=90° ad是ba边上放的
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 23:20:37
根据三角形相似可以求出BC=15×15/9=25,AC=20 过E点作EF⊥AC于E,则有AF=EF 再根据相似,有(20/12x)²=x²+(20-x)² 解得,
∠PCA=120°-α,60°
(1)连接EF,AEEF为△ABC中位线,所以EF‖AB且EF=AB/2=AD所以四边形ADFE为平行四边形所以AF与DE互相平分(2)因为四边形ADFE为平行四边形所以DF=AE=BC/2=2
在BC上任选一点P(随便)过P作AB的垂线PE,(E为垂足,在AB上)过P作AC的垂线PF,(F为垂足,在AC上)因为AB=AC,角BAC=90度,所以角B=角C=45度因为PE垂直于AB,所以角BE
因为 AD平分角BAC 所以 ∠cad=∠dae 因为 
三角形BAC与ADC为相似三角形,BC/AC=AC/DC,可得AC=8
15.解析:设高为h,则AB=√(9+h^2),AC=√(4+h^2),由余弦定理得25=AB^2+AC^2-2AB*AC*cos45=9+h^2+4+h^2-2*√【2(9+h^2)*4+h^2)】
在RT△BCF中∠CFB=90-∠FBC在RT△BED中∠BED=90-∠FBA所以∠CFB=∠BED因为∠FEC=∠BED(对顶角)所以∠CFB=∠FEC△CEF为等腰三角形所以CF=CE
1、连接AD∵AB=AC,D是BC的中点∴AD是△ABC的中垂线∵∠A=90°∴∠B=∠C=45°∴∠DAC=45°=∠C∴CD=AD=BD2、∵AN=BM,AD=BD,∠NAD=∠B∴△AND≌BM
1.∵O为BC中点∴OC=OB∵△ABC为等腰直角三角形∴OA=(1/2)BC∴OA=OB=OC2.连接OA∵△ABC为等腰直角三角形,且O为BC中点∴∠COA=∠B=45°∵AN=BMOA=OB∴△
证明:∵AD平分∠BAC,∴∠BAD=∠CAD,在△ABD和△ACD中AB=AC∠BAD=∠CADAD=AD,∴△ABD≌△ACD.
∵BD⊥MN,∴∠ABD+∠BAD=90°∵∠BAC=90°,∴∠BAD+∠CAE=90°∴∠ABD=∠CAE∵AB=AC,∠ADB=∠CEA=90°∴△ABD≌△CAE∴AD=CE,AE=BD∴DE
作DE垂直AB∵△ABC是等腰直接三角形∴∠B=45°∴△CDE是等腰直接三角形∴DE=BE∵AD是角平分线∴∠CAD=∠EAD∵在RT△ACD和RT△AED中∠CAD=∠EAD,AD是公共边∴由AS
因,角BAC=90度,AD垂直BC,角ADB=角ADC=90度,所以,角ABD=角DAC=90度-角C.因,BE平分角ABC,角MBD=1/2角ABC,AN平分角DAC,角MAO=1/2角DAC所以,
这个题好做.如答图所示:连接A‘B,过点B作AC的垂线交AC的延长线于点D∵∠BAC=30°∴BD=1/2x4=2在Rt△ABD中,AD=√4²-2²=2√3∴B(-3,-2√3)
(1)证明:因为AB=AC,且∠BDA=∠BAC=∠AEC,又∠DBA+∠DAB+∠BDA=180,∠EAC+∠ECA+∠AEC=180∠DAB+∠EAC=180所以有∠DBA=∠EAC,∠DAB=∠
证明:∠BAC=∠DAE=90°;∠B=∠ADE.则⊿BAC∽⊿DAE,AB/AD=AC/AE.又∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE.∴⊿BAD∽⊿CAE(两边对应成比例且夹
解题思路:本题考查了等腰三角形的性质和判定,全等三角形的性质和判定,三角形的内角和定理等知识点的综合运用.解题过程:附件最终答案:略
解题思路:数量关系为:BE=EC,位置关系是:BE⊥EC;利用直角三角形斜边上的中线等于斜边的一半,以及等腰直角三角形的性质,即可证得:△EAB≌△EDC即可证明.解题过程:附件
解题思路:(1)∵AD⊥BC∴∠DAC+∠C=90度∵∠BAC=90°∴∠BAF=∠C∵OE⊥OB∴∠BOA+∠COE=90°∵∠BOA+∠ABF=90°∴∠ABF=∠COE∴△ABF∽△COE。(2