如图 四边形abcd为圆o的内接四边形,对角线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:37:16
如图 四边形abcd为圆o的内接四边形,对角线
(几何证明选讲选做题)如图,已知四边形ABCD内接于⊙O,且AB为⊙O的直径,直线MN切

连接BD,∵AB为⊙O的直径,直线MN切⊙O于D,∠MDA=45°,∴∠ABD=45°,∠ADB=90°,∴∠DCB=∠ABD+∠ADB=45°+90°=135°.故答案为:135°.

如图,四边形ABCD内接于圆O,BD是圆O的直径,AE垂直CD,垂足为E,DA平分角BDE.1.求证AE是圆O的切线

1、证明:连接OA∵AE⊥CD∴∠DAE+∠EDA=90∵DA平分∠BDE∴∠BDA=∠EDA∵OA=OD∴∠OAD=∠BDA∴∠OAD=∠EDA∴∠OAD+∠DAE=90∴∠OAE=90∴AE是圆O

如图,四边形ABCD内接于圆O,BD是圆O的直径,AE垂直于CD,垂足为E,DA平分角BDE,若AE=2,DE=1,求C

不用相似三角形的解法:过A作AF⊥BC交BC于F,连接AC∵四边形ABCD内接于圆O,BD是圆O的直径∴∠BAD=∠BCD=90°∵AE⊥CD,AF⊥BC∴四边形AFCE是矩形,CF=AE=2∵DA平

如图,四边形ABCD内接于圆O,BD是直径,AE垂直CD,垂足为E,DA平分∠BDE,求证AE是圆O的切线

很简单因为DA评分∠BDE,所以∠BDA=∠EDA因为OD=OA,所以∠OAD=∠ODA所以∠OAD==∠EDA所以OA平行于ED因为AE垂直CD所以AE垂直OA所以AE是圆O的切线

如图,四边形ABCD内接于圆O,BD是直径,AE垂直CD,垂足为E,DA平分∠BDE

答:第二问:延长BA,CE,交于一点P因为DA=DA,角DAB=角DAP=90°,角ADB=角ADE(角平分线)所以三角形ADB和三角形ADP全等.所以AP=AB,即PB=2PA又BD是直径,所以角B

如图 内接于圆O的四边形ABCD的对角线AC与BD垂直相交于点K 设圆O 的半径为R 求证AK^2+BK^2+CK^2+

设圆心O到AC的距离为a圆心O到BD的距离为b则AK=√(R^2-a^2)+bCK=√(R^2-a^2)-bBK=√(R^2-b^2)+aDK=√(R^2-b^2)-aAK²+BK²

如图,四边形ABCD内接于圆o,BC是圆o的直径,AE垂直CD,垂足为E,DA平分角BDE.

你题没发完再问:再问:第2题再答:第一问可以求出90度第二问cd=ad圆里面两个都是直角三角行全等睡觉了拿手机在玩帮你看的没笔希望你弄得懂再问:恩,谢谢了

如图,在圆O的内接四边形ABCD中.AB=1,BC=2,CD=3,DA=4.求:(1)AC的长.(2)四边形ABCD的面

四点共圆,所以∠B+∠D=180°,即∠D=180°-∠B由余弦定理:△ABC中,AC²=AB²+BC²-2×AB×BC×cosB△BCD中,AC²=AD

如图,已知矩形ABCD内接于圆O,圆O的半径为4,AB=4,将矩形ABCD绕点O逆时针旋转.

因为A,B,C,D四点共圆且矩形的对角线相等并且互相平分,即OA=OB=OC=OD,无论怎么绕着O点旋转,结果仍然四点在圆上且为矩形,形状大小都不变.因为0A=0B=AB=4,由勾股定理求出AD=BC

如图,四边形ABCD是圆O的内接四边形,AC为直径,弧BD=弧AD,DE垂直于BC,垂足为E. (1)判断直线ED与圆O

解题思路:本题考察了切线的判定方法,及已知特殊线段的长度,得到三角形ODC是等边三角形,再结合扇形面积公式,等边三角形面积公式,求得阴影部分面积。解题过程:

如图,圆O与四边形ABCD的四边形都相切,圆O的半径为R,四边形ABCD的周长为C,则求四边形ABCD的面积S

建立如图所示圆O为△ABC的内切圆 ∴OE⊥ABOF⊥BCOH⊥DCOI⊥AD∴S=△AOD+△AOB+△BOC+△COD     =&nb

看图形证明圆的切线如图,四边形ABCD内接于圆心O.BD是圆心O的直径,AE垂直于CD,垂足为E,DA平分角BDE(1)

证明:(1)连接OA∵AE垂直于CD,垂足为E,DA平分角BDE∴∠ADB=∠ADE∠EAD+∠ADE=90°又∵OA=OB∴∠OAD=∠ADB∵∠ADB=∠ADE∠OAD=∠ADB∠EAD+∠ADE

如图,已知:四边形ABCD内接于圆,AD为直径...

因为∠ABC=124,所以∠ADC=56,又∠ACD=90,所以∠CAD=34,因为AC平分∠BAD,所以∠BAD=68,所以∠BCD=112.(内接于圆的四边形对角是互补的,直径所对的角为直角)

如图,四边形ABCD是圆O的内接四边形,AB=AD,∠BCD=120°.求证AC=BC+CD

,△ABD为等边三角形所以,∠BCA=∠BDA=60°在AC上截取一段CE=BC那么,△BCE也是等边三角形则,∠CBE=60°而,∠ABD=60°所以,∠CBE-∠DBE=∠ABD-∠DBE即,∠C

如图:圆O为四边形ABCD的外接圆,圆心O在AB上,OC平行AB.

OA=OC∠OAC=∠OCAOC平行AB∠AOC+∠DAB=180°∠AOC+∠OAC+∠OCA=180°∠OCA=∠CAB∴AC平分∠DAB第二问还没出来-=容易求得AC平分∠DAB所以弧BC=弧C

如图,已知四边形ABCD内接于直径为3的圆O

AC=3,PC=0.6,∴AP=2.4,设BP=x,PD=y,则AB=BP=x+y,由相交弦定理,xy=1.44,y=1.44/x,①由△PAB∽△PDC得AB/DC=PA/PD,∴DC=AB*PD/

已知四边形ABCD内接于直径为3的圆O,

如图,连结BO,并延长交AD于Q,连OD,则BQ为AD垂直平分线,且△OAB≌ △ODB(三边相等),  ∴∠ODP=∠OAB=∠CDP∴ 在△CDO中&nbs