如图 三角形pqr是三角形abc
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:16:32
这道题不是你看错打错就是你没有写完.注意:AI与BI中的“I"重复啦.还有CE中的E又从哪儿跑出来的.
作P关于OB的对称点S,关于OA的对称点T,连接ST分别交OA、OB于Q、R点,即为所求两点所利用的知识是对称性和两点之间直线段最短
1.
因为角ABE+角A=90度角ACF+角A=90度所以角ABE=角ACF角A=角A所以三角形ABE相似于三角形ACF所以AB比AC=AE比AF角A公用所以三角形AEF相似于ABC
证明:(1)∵△ABC∽△ADE∴AB/AC=AD/AE,∠BAC=∠DAE∴∠BAC-∠DAC=∠DAE-∠DAC即:∠BAD=∠CAE∴△ABD∽△ACE(两组对应边的比相等,且相应的夹角相等)(
因为AB=AC,BD=CE所以AD=AE又角A=角A,AB=AC所以三角形ABE全等于三角形ACD(SAS)
证明:∵∠CDA=∠BEA=90°∵∠CAD=∠BAE∴△ABE∽△ACD∴AE:AD=AB:AC∴AE:AB=AD:AC又∵∠EAD=∠BAC∴△ADE∽△ACB
过P作关于BC的对称点P′,连P′Q交BC于R,由PR=P′R,∴PQ+PR+QR=PQ+P′Q周长最短.
三角形APB与APQ及PBR三者两两相似;因为:∠APB=∠PRB=120°;∠B公用;所以三角形APB与三角形PRB相似;其余同理(2)由三角形APQ与三角形PRB相似得:AQ/PR=PQ/BR;即
如图.△ABM≌△DEN△CBM≌△DFN∵AB=√(4^2+4^2)=4√2DE=√(4^2+4^2)=4√2AM=√(4^2+1^2)=√19DN=√(4^2+1^2)=√19BM=3,EN=3∴
∵三角形PQR是三角形ABC经过某种变换后得到的图形,∴点A(4,3)、点P(-4,-3),点B(3,1)、点Q(-3,-1),点C(1,2)、点R(-1,-2),∴如果三角形ABC中任意一点M的坐标
任选P或Q做关于BC的对称点,假如是做P的对称点P',再连接PP',跟BC的交点就是所求的dian原因:两点间,线段最短.
对于BC上任意一点R来说,△PQR的周长中,PQ的长度始终没变,因此问题等价于在BC上求一点R,使PR+QR最小,这和那个课本上的建造自来水厂的问题一模一样.作点P关于BC的对称点P',连结P'Q交B
1、在△PBC平面上作PM⊥BC,交BC于M,在△PAM平面上作AG⊥PM,交PM于G,AG就是平面PBC的垂线.证明:∵PA⊥平面ABC,∴PA⊥BC,而BC⊥PM,∴BC⊥平面PAM,而AG在PA
(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;
假设P,Q分别在AB.AC上过P做关于BC的对称点M,连接QM,交BC于R,R点即为所求证明:P,Q为定点PQ=定值BC上任取一点与R点不重合的点N三角形MQN中:MQ=MR+RQ=PR+RQ
50平方厘米,利用旋转
由平移的性质知,P′Q′=PQ=2,RQ∥R′Q′,∴△P′QH∽△P′Q′R′∵S△P′QH:S△P′Q′R′=P′Q2:P′Q′2=1:2,∴P′Q=1,∴PP′=2−1.故答案为2−1.
设小方格长度为1则根据勾股定理AC²=3²+2²=13AB²=4²+6²=52BC²=1²+8²=65而AC&
连AD、EF,可证△ADE≌△CDF,△ADF≌BDE,所以DE=DF,AE=CF=5,AF=BE=12,由勾股定理可得EF=13,DE=DF=6.5乘根号2,S△DEF=169/8.