如图 三角形acb和三角形ecd都是等腰直角三角形其中ac=bc,ec=ed
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 20:02:58
90°.∵等腰△ABC和△ECD∴∠ECD=∠ACB=90°,∠CED=∠B=∠CAB=45°EC=CD,AC=BC∴∠ECA=∠DCB∴在△ECA和△DCB中EC=DC∠ECA=∠DCBAC=CB∴
题目中,已知条件有个地方写错了吧,应该是:“等腰直角三角形∠ACB=∠DCE=90度”,是不是?是的.如上图:证明:在△BCD和△ACE中∵∠ACB=∠DCE=90º∴∠ACB-∠ACD=∠
由△ACE≌△BCD知AE=BD=12,角aec=角abc=45°,角ead=45°+45°=90°;在三角形aed中,勾股定理即可,自己做吧
BC=ACDC=EC∠ACD+∠ECA=∠DCB+∠ACD(1)得证由题可算出BC又∠CBD=45°可算出CD固ED可算出△ACD三边已得可算出∠ACD△ACEACCE边已得夹角已得可算出AE易证△C
连接BE∵△CAB 和 △CDE 都为等腰直角三角形且∠ACB=∠DCE=90°∴∠ACD=∠BCE又∵AC=BC CD=CE∴△ACD
证明:连接BD因为∠ECD=∠ACB=90°所以∠ECA+∠ACD=∠DCB+∠ACD=90°所以∠ECA=∠DCB,又EC=DC,AC=BC,所以△ECA≌△DCB,从而AE=BD,∠BDC=∠AE
.△ACB和△ECO都是等腰三角形,∠ACB=∠ECD=90°=>AC=BCDC=EC∠ACB=∠ECD=90°=>∠ACB-∠ACD=∠ECD-∠ACD即∠BCD=∠ACE联合=>△ACE≌△BCD
连结BE,则RH、FG分别是△ABE、△BDE的中位线∴RH‖BE,FG‖BE,且RH=BE/2,FG=BE/2,∴RH=FG,RH‖FG∴四边形RFGH是平行四边形同理,连结AD,则HG、RF分别是
证明:连接BE∵∠ACB=∠ECD=90,AC=BC,DC=EC∴∠A=∠ABC=45,DE=√2CD∵∠ACD=∠ACB-∠BCD,∠BCE=∠ECD-∠BCD∴∠ACD=∠BCE∴△ACD≌△BC
因为没看到图,根据题意,应该是A、E在CD同侧吧?那么△AED为直角三角形△ACE和△BCD中CE=CD,CA=CB,角ACE=角BCD=90-角ACD所以△ACE≌△BCD(SAS).角EAC=角D
证明:因为△ABC,△ECD都是等边三角形所以,AC=BC,EC=DC,∠ACB=∠ECD=60°所以,∠ACB+∠ACE=∠ECD+∠ACE,即,∠BCE=∠ACD所以,△BCE≌△ACD所以,BE
(1)证明:∵ΔABC和ΔECD都是等腰直角三角形,且∠ACB=∠DCE=90度∴AC=BC,CD=CD,且∠ACE+∠ACD=∠ACD+∠BCD=90度∴∠ACE=∠BCD∴ΔABC≌ΔECD(SA
由AE=AC,得:角AEC=角ACE;由BC=BD,得:角BDC=角BCD.所以,角ACE+角BCD=角AEC+角BDC,即,角ACB+角ECD=角DEC+角CDE=180°-角ECD.所以,角ECD
相等证明:因为S△BCF=1/2h*BC,S△ECD=1/2h'*CD,又因为平行四边形ABCD的面积S=h*BC=h'*CD,则S△BCF=1/2S=S△ECD,所以三角形BCF和三角形ECD的面积
由题意知:ac=bc,dc=ec∵∠eca+∠acd=90∠bcd+∠acd=90∴∠eca=∠bcd∴△ace全等于bcd∴bd=ae再问:如图,已知ab等于ac,d是ab上的一点,de垂直bc于点
(1)因为△ACB和△ECD都是等腰直角三角形,所以AC=BCEC=CD又因为∠BCD=∠ACB=90°所以△ACE≌△BCD(SAS)(2)直线AE与BD互相垂直就是证明∠AFD=90°所以延长AE
(1)由ABC为等腰三角形得,AC=BC;同理得CE=CD;角ACE=90-角ACD,而角BCD=90-角ACD,所以可得三角形ACE全等于三角形BCD.(2)由(1)可知角CAE=CBD=45,而角
已知△ABC和三角形CDE中,AC=BC,CD=CE,∠ACB=∠ECD所以△ACE≌△BCD所以AE=BD,∠EAC=∠CBD因为M、N分别为AE、BD的中点所以AM=BN,∠MAC=∠NBC因为A
证明:(1)∵△ABC,△ECD都是等腰三角形∴AC=BC,EC=DC,∠ECD=∠ACB=90°∴∠ECD-∠ACD=∠ACB-∠ACD即∠ACE=∠BCD∴△ACE≌△BCD(2)∵△ACE≌△B