如图 三角形ABC和三角形ABD中 ∠C=∠D=Rt∠ E是AB边上的中点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:25:34
如图 三角形ABC和三角形ABD中 ∠C=∠D=Rt∠ E是AB边上的中点
如图,已知三角形ABC相似于三角形ADE,连接BD,CE.1.是说明三角形ABD相似于三角形

证明:(1)∵△ABC∽△ADE∴AB/AC=AD/AE,∠BAC=∠DAE∴∠BAC-∠DAC=∠DAE-∠DAC即:∠BAD=∠CAE∴△ABD∽△ACE(两组对应边的比相等,且相应的夹角相等)(

如图,在三角形ABC中,AD、BE、BF分别为三角形ABC、三角形ABD、三角形BCE的中线,且三角形ABC的面积为12

结果是3△BEC面积是△BAC的一半,即是6(两三角形同底BC,可分别过A、E向BC做高,E为中点,则高的比是2:1,面积同高比)△BEF面积=△BCF面积=½△BEC面积=3(由B做三

如图,三角形abd和三角形ace都是等边三角形,求证 三角形adc全等于三角形abe

三角形abd和三角形ace都是等边三角形所以AE=ACAD=AB角ACE=角DAB=60°角DAB+角BAC=角CAE+角BAC角DAC=角BAEAE=ACAD=AB(边角边)所以全等!

如图分别以ABAC为腰在三角形ABC的形外作两个等腰直角三角形三角形ABD和ACE

BE=DC且BE⊥DC∵∠BAD=∠CAE=90°∴∠BAD+∠BAC=∠CAE+∠BAC即∠DAC=∠BAE又∵AD=ABAC=AE∴△DAC≌△BAE∴BE=CD∠DCA=∠BEA∵∠CAE=90

已知:如图,AD,AE分别是三角形ABC和三角形ABD的中线.

∵AD为△ABC的中线,AE是△ABD的中线,∴BD=CD,BE=DE,∴BE=1/2BD,BD=1/2BC;又∵AB=BD,∴BE=1/2AB,AB=1/2BC,∴BE/AB=AB/BC=1/2,∠

如图,AD是三角形ABC的角平分线,DE,DF分别是三角形ABD和三角形ACD的高,求证:AD垂直平分EF

证AD是三角形ABC的角平分线,DE,DF分别是三角形ABD和三角形ACD的高DE=DF∠DEA=∠DFA=90°AD=AD   △AED≌△AFD    AE=AF  AD是三角形ABC的角平分线 

如图,已知三角形ABD相似三角形ACE,求证三角形ABC相似三角形ADE

没图片吗,天马行空很难啊.再问:撒比,不会打拉到。你滚吧!再答:∵ABC相似于三角形ADE∴AD:AC=AB:AE∵∠DAB=∠CAE∴三角形ABD相似于三角形ACE

如图,分别以三角形ABD的两边AB、AD为直角边向两侧做两个等腰直角三角形,:三角形ABC和三角形ADE,连接CD、BE

由题意可得AC=ABAE=AD∠ABC=∠DAE(直角三角形的两个直角)所以∠ABC+∠DAB=∠DAE+∠DAB因为AC=AB∠DAC=∠EABAE=AD(三角形全等SAS)所以可得△DAC≌△EA

一条初二上学期数学几何题 如图,AD是三角形ABC的角平分线,DE、DF分别是三角形ABD和三角形ACD的高.

因为AD是三角形ABC的角平分线,DE、DF分别是三角形ABD和三角形ACD的高所以角EAD和角FAD相等,所以角AED和角AFD相等在三角形AED和三角形AFD中,角EAD=角FAD,角AED=角A

如图,三角形abd和三角形ace均为等边三角形,求证:三角形abe全等三角形adc

用SAS证因为△ABD为等边三角形,所以边AD=AB同理可得AC=AE又因为角DAB=角CAE,所以角DAB+角BAC=角CAE+角BAC,即角DAC=角BAE所以△ABE≌△ADC.

三角形 如图在三角形ABC中,以AB,AC边为边向外做等边三角形ABD和等

证明:连接CD,BE∵△ABD和△ACE都是等边三角形∴AD=AB,AC=AE,∠BAD=∠CAE=60°∴∠DAC=∠BAE∴△ACD≌△ABE∴CD=BE∵P是BD中点,M是BC中点∴PM是△BC

如图,d,e分别是三角形abc的边bc和ab上的点,三角形abd与三角形acd的周长相等,

设AE=xBD=y由题意BC=aAC=bAB=c△ABD周长=△ACD周长=>c+y=b+(a-y)=>2y=a+b-c=>y=(a+b-c)/2=BD△CAE周长=△CBE周长=>b+x=a+(c-

如图已知ad是三角形abc的角平分线,de,df分别是三角形abd中ab边和三角形acd中ac边的高.

∵AD平分∠BAC(已知)∴∠BAD=∠CAD(角平分线定义)∵DE⊥AB DF⊥AC(已知)∴∠AED=∠AFD=90°(垂直定义)在△AED与△AFD中∠EAD=∠FAD(已证)∠AED=∠AFD

如图,AD是三角形ABC的角平分线,DE,DF分别是三角形ABD和三角形ACD的高,角DEF=20°,则角BAC等于

∵AD为角平分线∴DE=DF,∵DE、DF为高、AD=AD∴△ADE≌△ADF(HL)∴AE=AF∴∠AFE=∠AFE又∵∠DEF=20°∴∠AEF=70°∴∠EAF=40°

如图,AD是三角形ABC的角平分线,DE,DF分别是三角形ABD和三角形ACD的高,求证:(1)角DEF=角DFE,(3

 (1)∵AD为角平分线∴DE=DF(角平分线到两边距离相等)∴∠DEF=∠DFE(等边对等角) (2)△ADE≌△ADF(HL)∴AE=AF

如图,在三角形ABC中,AD BE BF分别为三角形ABC三角形ABD三角形BCE的中线,三角形ABC面积12,求三角形

ADBEBF分别为三角形ABC三角形ABD三角形BCE的中线三角形BCD的面积=三角形ABC的面积的个一半=6三角形BCE的面积=三角形BCD的面积的个一半=3三角形BEF的面积=3