如图 三角形abc中,ab是圆的直径,并且ab长10厘米

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:10:27
如图 三角形abc中,ab是圆的直径,并且ab长10厘米
如图,三角形ABC中AB=BC,D是AB延长线上的一点说明AD>DC

AD=AB+BD在△BCD中有三边关系:BC+BD>DC∵AB=BC所以AD=AB+BD=BC+BD>DC希望能帮到您,若果满意,望采纳,谢谢!

如图,在三角形ABC中,AB=AC,MN是AB的垂直平分线

∵MN是AB的垂直平分线∴AN=NB∴三角形BNC的周长=BC+BN+NC=BC+AN+NC=BC+AC∵AB=AC∴三角形BNC的周长=BC+AC=AB+BC=10cm(2)三角形BNC的周长为20

如图 在三角形abc中,AB>AC,AM是BC边上的中线,求证AM>二分之一(AB-AC)

自C作AM的平行线,与BA交一点,然后用中线定理结合三角形两边之差小于第三边定理即可证明再问:能给我过程吗再答:按我上面说的,假设交点为D,则2AM=CDAB=AD三角形中位线定理AD-AC

如图三角形ABC中,AB是AD的5倍,AC是AE的3倍,如果三角形ADE的面积等于1,三角形ABC

3倍和5倍,5×1×3=15,你想想,看边上,望采纳(注意等底等高)

如图,三角形ABC中,AB=AC,AD是三角形ABC的中线,问AD还是三角形的什么线?为什么?用几何语言回答

因为AB=AC所以A在BC边的垂直平分线上AD为三角形BC边上的中线所以D在BC的垂直平分线上则AD为三角形BC边的垂直平分线

如图三角形ABC中AB=AC是三角形ABC的角平分线

(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;

如图在RT三角形ABC中,CD是斜边AB上的高,求证三角形ACD相似三角形ABC

用角角边.因为角A加角ACD等于九十度角A加角B等于九十度所以角ACD等于B又因为角A等于角A且AC等于AC所以根据定理可得相似证明完毕.自己在写点步骤吧连贯一下.

如图 三角形abc中,ab=bc,d是ab延长线上的点,说明ad>dc的理由

证明:ad=ab+bd=bc+bd在三角形bdc中:bc+bd>dc所以ad>dc证毕.

如图,等腰三角形ABC中,AB=AC,BD是AC上的中线,三角形ABC周长为22,三角形ABD的周长比三角形BCD的周长

因为d是ac中点,则ad=dc,又知adb比bcd多2,则ab比bc多2,则腰长为(22+2)/3=8cm,底边长为8-2=6cm再问:请问为什么要除以3?再答:因为两腰相等,底边比腰少2厘米,把底边

如图,在三角形ABC中,D、E分别是AB和AC边上的中点,如果三角形ABC的面积是8,求三角形ADE的面积.

用相似比来做,因为D\E是中点,所以DE是中位线,所以DE比BC就是1:2所以三角形ADE面积比三角形ABC面积就是相似比的平方1:4所以ADE面积是2

如图,三角形ABC中,DE是AB的垂直平分线,BE=4,三角形ACD的周长为23,求三角形ABC的周长.

DE是AB的垂直平分线∴AE=BE=4∠AED=∠BED=90°∵DE=DE∴△AED≌△BED(SAS)∴AD=BDACD的周长为23=AC+CD+AD=AC+CD+BD=AC+BC∴△ABC的周长

如图,三角形ABC中,CD垂直于AB且CD=AB*DB,试说明三角形ABC是直角三角形

∵CD²=AD*DB∴AD/CD=CD/DB又∵∠CDA=∠CDB∴△ACD∽△CBD∴∠A=∠BCD,∠B=∠ACD∴∠ACB=∠ACD+∠BCD=∠A+∠B=180º/2=90

如图在三角形ABC中,BE,CF分别是AC,AB两边上的高.

证明△AGC和△ADB全等.(1)△CFA和△ABE有2个公共角(∠BAC和∠CAB,∠AFC和∠AEB),所以∠ABE=∠ACG.又因为BD=AC,CG=AB.△AGC和△ADB全等(SAS).所以

如图,在三角形ABC中,点D,E分别是AB,AC边上的点

∠B的同位角是∠ADE,同旁内角是∠ACB,∠B+∠BDE的度数是180度再问:同位角和同旁内角都只有一对吗还有后面一题的过程谢谢!!表示超急再答:恩,同旁内角因为是关于相连的3条线的,有两对,∠AD

如图,在三角形ABC中,D,E分别是AB,AC上的点

然后呢再问:且AD=31,DB=29,AE=了30,EC=32,找出角1角2角3角4中相等的角再答:等一下我算一哈再问:嗯,谢谢再答:角1234分别在哪里啊,再答:你截图给我看看初一的题目吧,再问:在

如图,三角形abc中,d是bc的中点,求证ab ac>2ad

解题思路:延长AD到M,使AD=DM,连接BM,CM,根据平行四边形的判定得到平行四边形ABMC,推出AC=BM,根据三角形的三边关系定理得出AB+BM>AM,代入求出即可.解题过程:

如图:在三角形ABC中,AB

倍长AD到E,AD=DE连接CE三角形CDE全等于三角形BDA(根据边角边定理来证明这个结论)对应边相等,对应角相等,则CE=AB,角DEC=角DAB三角形ACE中CE=AB所以角DAC所以角DAC