如图 P是等边三角形ABC外一点,那BP绕点B顺时针旋转60度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 09:01:33
证明:在BP的延长线上取点D,使PC=PD,连接CD∵等边△ABC∴AC=BC,∠BAC=∠ACB=60∵∠BAC+∠BPC+∠ABP+∠ACP=360,∠ABP+∠ACP=180∴∠APC=360-
因为三角形ABC为等边三角形所以∠A=∠B=∠C=60度AB=BC=AC=4先把DPEPFP延长交BC于G,交AC于H,交AB于K因为DP平行AB所以∠DHC=∠A=60度所以PE=HE因为FP平行A
以PA为边长作等边△PAD,连结BD∵∠PAD=60°=∠BAC∴∠BAD=∠PAC∵AD=AP,AB=AC∴△ABD≌△APC∴BD=PC=5∵PD=PA=3,PB=4∴∠BPD=90°∵∠APD=
过C点作CD=2,且∠BCP=∠ACD连结AD,那么△BPC≌△ADC连结PD,得到△PDC是等边三角形AP=1,AD=√3,PD=2所以∠PAD是直角∠ADP=30°(没学三角函数,但是直角三角形一
延长BP到D,使PD=PC.∠A=60,∠ABP+∠ACP=180,那么∠BPC=120,∠CPD=60,△PCD是等边三角形,∠PCD=60=∠ACB,∠ACP=∠BCD,BC=AC,DC=PC,所
分析:作AB的垂直平分线,再根据等边三角形的性质及全等三角形的性质解答即可.作AB的垂直平分线,∵△ABC为等边三角形,△ABD为等腰三角形;∴AB的垂直平分线必过C、D两点,∠BCE=30°;∵AB
把P点看作特殊点,BC边中垂线上一点,不用算就出来了,719.5,对不?
证明:在PA上取点D,使PD=PB,连接BD∵等边三角形ABC∴∠ABC=∠ACB=60,AB=BC∵∠APB,∠ACB所对应圆弧都为劣弧AB∴∠APB=∠ACB=60∴PD=PB∴等边三角形BPD∴
∵△P’AB≌△PAC∴∠P’AB=∠PAC∵∠BAP+∠PAC=60°∴∠P'AB+∠BAP=60°∵P'A=PA,∠P'AP=60°连接P'P∴△P'AP是等边△∵P'A=PA=6∴P'P=PA=
这个题目主要考察的是正弦定理和余弦定理的应用.(1)用正弦定理即可求出 EP BP的长度.(2)EQ=EP EF=10 ∠FEQ=60°-45°(∠FEQ=∠QEP-∠PEF ∠PEF=∠
1.根据题意画出的图不清楚,没法求值2.延长DM交CB的延长线于点H∵AD‖BC,∴∠H=∠ADM,∠DAM=∠MBH,∵AM=BM,∴△AMD全等于△BMH,∴AD=BH,DM=HM∵AD‖BC,∴
将三角形ABP绕B点旋转60度使AB与BC重合.则P点移动到P'点.又旋转性可知三角形ABP与三角形CBP'全等.所以,BP'=BP=4,CP'=AP=2根号3,角ABP=角CBP'.连接PP',因为
(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+
作PH‖AB交AB于H,作FM‖BC交AC于M, 易得△AFM和△FHP为等边△,四边形BDPH和PEMF为平行四边形. ∴PF=FH,PE=FM=AF,PD=BH ∴P
将△ABP旋转60°使AB与CB边重合点E为点P对应点连接EP此时构成等边三角形BPE与直角三角形BEC可求出这两个三角形面积之和同理将三角形APC旋转60°使AC与AB重合点F为P对应点连接FP此时
等于正三角形边长3倍再问:不对吧,正三角的面积是(根号3)/4乘以边长的平方吧再答:我说的是它的面积刚好等于这个正三角形边长的 3 倍。当然得先求出边长,经计算等于 4&
△PEF是等边三角形.理由:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵PE∥AB,PF∥AC,∴∠PEF=∠ABC=60°,∠PFE=∠ACB=60°,∴∠PEF=∠PFE=60°,∴P