如图 P是等边三角形ABC外一点,那BP绕点B顺时针旋转60度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 09:01:33
如图 P是等边三角形ABC外一点,那BP绕点B顺时针旋转60度
如图,三角形ABC是等边三角形,P是三角形外一点,且角ABP+角ACP=180度.求证PB+PC=PA

证明:在BP的延长线上取点D,使PC=PD,连接CD∵等边△ABC∴AC=BC,∠BAC=∠ACB=60∵∠BAC+∠BPC+∠ABP+∠ACP=360,∠ABP+∠ACP=180∴∠APC=360-

如图,△ABC是等边三角形,P是三角形内一点,PD//AB,PE//BC,PF//AC,若△ABC的周长为12,则PD+

因为三角形ABC为等边三角形所以∠A=∠B=∠C=60度AB=BC=AC=4先把DPEPFP延长交BC于G,交AC于H,交AB于K因为DP平行AB所以∠DHC=∠A=60度所以PE=HE因为FP平行A

如图,已知三角形ABC是等边三角形,点P是三角形ABC中的任意一点,分别连接AP,BP,CP,且AP=3,BP=4,CP

以PA为边长作等边△PAD,连结BD∵∠PAD=60°=∠BAC∴∠BAD=∠PAC∵AD=AP,AB=AC∴△ABD≌△APC∴BD=PC=5∵PD=PA=3,PB=4∴∠BPD=90°∵∠APD=

如图,点P是等边三角形ABC内一点,PA=1,PB=根号3,PC=2,求三角形ABC的周长.

过C点作CD=2,且∠BCP=∠ACD连结AD,那么△BPC≌△ADC连结PD,得到△PDC是等边三角形AP=1,AD=√3,PD=2所以∠PAD是直角∠ADP=30°(没学三角函数,但是直角三角形一

如图,△ABC是等边三角形,P是△ABC外的一点,且∠ABP+∠ACP=180.,那么PB+PC=PA,请说明理由

延长BP到D,使PD=PC.∠A=60,∠ABP+∠ACP=180,那么∠BPC=120,∠CPD=60,△PCD是等边三角形,∠PCD=60=∠ACB,∠ACP=∠BCD,BC=AC,DC=PC,所

如图,已知D,P分别是等边三角形ABC内,外一点,且DA=DB,AB=BP,∠DBP=∠DBC,求∠BPD的.

分析:作AB的垂直平分线,再根据等边三角形的性质及全等三角形的性质解答即可.作AB的垂直平分线,∵△ABC为等边三角形,△ABD为等腰三角形;∴AB的垂直平分线必过C、D两点,∠BCE=30°;∵AB

如图,P是等边三角形abc外接圆弧bc上任意一点,求证:pa=pb+pc

证明:在PA上取点D,使PD=PB,连接BD∵等边三角形ABC∴∠ABC=∠ACB=60,AB=BC∵∠APB,∠ACB所对应圆弧都为劣弧AB∴∠APB=∠ACB=60∴PD=PB∴等边三角形BPD∴

如图 p是等边三角形abc内的一点,PA=6,PB=8,PC=10,若P'是△ABC外的一点,且△P'A

∵△P’AB≌△PAC∴∠P’AB=∠PAC∵∠BAP+∠PAC=60°∴∠P'AB+∠BAP=60°∵P'A=PA,∠P'AP=60°连接P'P∴△P'AP是等边△∵P'A=PA=6∴P'P=PA=

如图;等边三角形ABC中,点E,F分别是AB,AC的中点,P为BC上一点,连接EP,做等边三角形EPQ,连接FQ,EF

这个题目主要考察的是正弦定理和余弦定理的应用.(1)用正弦定理即可求出 EP  BP的长度.(2)EQ=EP  EF=10     ∠FEQ=60°-45°(∠FEQ=∠QEP-∠PEF ∠PEF=∠

初二三角形中位线1.如图,△ABC是等边三角形,P是三角形内一点,PD//AB,PE//BC,PF//AC,若△ABC的

1.根据题意画出的图不清楚,没法求值2.延长DM交CB的延长线于点H∵AD‖BC,∴∠H=∠ADM,∠DAM=∠MBH,∵AM=BM,∴△AMD全等于△BMH,∴AD=BH,DM=HM∵AD‖BC,∴

如图,点P是等边三角形ABC内一点,PA=2,PB=4,PC=二倍根号三,求△ABC的面积

将三角形ABP绕B点旋转60度使AB与BC重合.则P点移动到P'点.又旋转性可知三角形ABP与三角形CBP'全等.所以,BP'=BP=4,CP'=AP=2根号3,角ABP=角CBP'.连接PP',因为

如图,△ABC是等边三角形,P为三角形内任意一点,边长为1.

(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+

如图,等边三角形ABC的边长为a,P是三角形ABC内的一点,PE∥BC,PF∥AC,PD∥AB,

作PH‖AB交AB于H,作FM‖BC交AC于M, 易得△AFM和△FHP为等边△,四边形BDPH和PEMF为平行四边形. ∴PF=FH,PE=FM=AF,PD=BH ∴P

如图:点p是等边三角形ABC内一点,PA=3 PB=5 PC=4.求:三角形ABC的面积.

将△ABP旋转60°使AB与CB边重合点E为点P对应点连接EP此时构成等边三角形BPE与直角三角形BEC可求出这两个三角形面积之和同理将三角形APC旋转60°使AC与AB重合点F为P对应点连接FP此时

如图,点P是等边三角形ABC内一点,且点P到三边的距离分别是1,2,3,求面积

等于正三角形边长3倍再问:不对吧,正三角的面积是(根号3)/4乘以边长的平方吧再答:我说的是它的面积刚好等于这个正三角形边长的 3 倍。当然得先求出边长,经计算等于 4&

如图,△ABC是等边三角形,P为△ABC内任意一点,PE∥AB,PF∥AC.那么,△PEF是什么三角形?说明理由.

△PEF是等边三角形.理由:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵PE∥AB,PF∥AC,∴∠PEF=∠ABC=60°,∠PFE=∠ACB=60°,∴∠PEF=∠PFE=60°,∴P