如图 p是正方形abcd内一点绕点b顺时针旋转能与三角形cpb
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 13:00:55
因为四边形ABCD是正方形,三角形PBC是等边三角形,BC=BP=BA,所以∠PBC=60°,∠ABP=30°三角形BAP是等腰三角形,根据等腰三角形的性质得∠PAB=∠APB=(180°-30°)÷
是求角APB的度数吧?以B为圆心旋转三角形BAP使A与C重合得三角形BCF,连接PC,则PA=CF=a,BF=PB=2a,角ABP=角CBF,角PBF=90度,角BPF=角BFC=45度,PF=2√2
旋转角∠PBP‘=∠ABC=90°,BP=BP’=3,∴SΔPBP‘=1/2*BP*BP’=9/2.
过B点做AP的垂线交AP延长线于Q则,∠BPQ=45度,PB=根号2,故QP=QB=1,QA=QP+AP=2,AB=根号5过P点做AC垂线交AC于G,则∠PAG=90-∠PAB=∠QBA故AG/AP=
1、(1)扫过区域是个以a为半径,圆心角为90度的扇形,所以面积是πa^2/4.(2)由已知,P'B=PB=4,P'C=2,且∠PBP'=90,所以∠PP'B=45,PP'=4√2;又因为∠BP'C=
如图,把△PBC绕点B逆时针旋转90°得到△ABP′(点C的对应点C′与点A重合),所以,AP′=PC,BP′=BP=1,所以,△PBP′是等腰直角三角形,所以,∠P′PB=45°,PP′=BP2+B
(1)∵将△PAB绕点B顺时针旋转90°到△P′CB的位置,∴△PAB≌△P'AB,∴S△PAB=S△P'AB,S阴影=S扇形BAC-S扇形BPP′=π/4*(a2-b2);(2)连接PP′,根据旋转
正方形ABCD的面积=AB²,答案如图
p是边长为1的正方形abcd内的一点,且三角形abp的面积为0.4,则三角形abp中ab边上的高为0.4X2/1=0.8从而三角形dcp中dc边上的高为1-0.8=0.2三角形dcp的面积的面积为1X
用重合法.正方形ABCD内取一点Q使△QBC是等边三角形.容易计算∠QAD=∠QDA=15°,射线AQ,AP重合.射线DQ,DP重合.它们的交点Q与P重合,△PBC是等边三角形.
正方形的面积分为两部分:即长方形AEFD和长方形BCFE.长方形AEFD的面积是三角形APD的面积的2倍,即2n.长方形BCFE的面积是三角形BPC的面积的2倍,即2m.则正方形的面积是2n+2m.
作出E关于AC的对称点M,连接DM与AC的交点为所求算出最小值为2
如图,四边形ABCD是正方形,E是正方形ABCD内一点,F是正方形ABCD外一点,连结BE、CE、DE、BF、CF、EF.(1)若∠EDC=∠FBC,ED=FB,试判断△ECF的形状,并说明理由.(2
证明:∵△CBE是△ABP旋转所得∴△CBE≌△ABP∴BP=BE,∠ABP=∠CBE∵四边形ABCD是正方形∴∠ABC=90°∵∠ABP+∠CBP=∠ABC=90°∴∠EBP=∠CBE+∠CBP=9
∠APD=150度,因为△BCP是等边三角形,所以BP=BC=PC,∠PBC=∠PCB=∠BPC=60度,又因正方形ABCD,所以∠ABC=∠BCD=90度,AB=BC=CD,所以∠ABP=∠DCP=
igxiong008是对的~
(1)∵△PAB绕点B顺时针旋转至△P′CB处,∴BP=BP′,∠ABP=∠CBP′,∵∠ABP+∠PBC=90°,∴∠CBP′+∠PBC=90°,∴∠PBP′=∠ABC=90°,∴△PBP′是等腰直
因为∠PBA+∠PBC=90又∠PBC=∠P'BC所以∠PBA+∠P'BC=90所以P'P^2=BP^2+BP'^2因为BP=BP'所以P'P^2=9+9P'P=3√2
设AB=aB(0,0),C(a,0),D(a,a),A(0,a)以A,B,C为圆心,半径为1,2,3的圆交于P点方程为x^2+y^2=4x^2+(y-a)^2=1---(2)(x-a)^2+y^2=9
连接PC,∵PE⊥DC,PF⊥BC,ABCD是正方形,∴∠PEC=∠PFC=∠ECF=90°,∴四边形PECF为矩形,∴PC=EF,又∵P为BD上任意一点,∴PA、PC关于BD对称,可以得出,PA=P