如图 p是正三角形abc内一点,PA=2.PB=4,PC= ,则ABC的面积为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:12:36
如图 p是正三角形abc内一点,PA=2.PB=4,PC= ,则ABC的面积为
如图,P是△ABC内一点,连结PB、PC

1、∠P+∠1+∠2=180(1)∠A+2∠1+2∠2=180(2)2(1)-(2)得2∠P-∠A=180即∠P=90°+1/2∠A成立2、∠P+∠1+∠2=180(1)∠A+3∠1+3∠2=180(

如图,在边长为2的正三角形ABC中,已知点P是三角形内任意一点,则点P到三角形的三边距离之和PD+PE+PF=_____

连接AP、BP、CP,设等边三角形的高为h,如图:∵正三角形ABC边长为2∴h=22−12=3∵S△BPC=12BC•PDS△APC=12AC•PES△APB=12AB•PF∴S△ABC=12BC•P

已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.

把△ABP绕点B顺时针旋转60°得到△BCQ,连接PQ,∵∠PBQ=60°,BP=BQ,∴△BPQ是等边三角形,∴PQ=PB=4,而PC=5,CQ=4,在△PQC中,PQ2+QC2=PC2,∴△PQC

如图,已知△abc是正三角形,p为三角形内一点,且PA=3

可把三角形ABC内的三个三角形分别沿AC,BC,AB折叠,得到对应点P,P2,P3,得到一个六边形,三角形ABC的面积为六边形面积的1/2,然后再连接P1P2P3得到四个特殊的四边形,此题答案也就出来

如图,P为正三角形ABC内一点,P到三个顶点的距离PA=2,PB=4,PC=2根号3 求证正三角形ABC的面积

AP=AP'=PP'=2P'C=PB=4PC=2√3∴∠P'PC=90°∠PCP'=30°由勾股定理得到AP^2+PC^2=P'C^2∠P'PC=90°AP=1/2PB所以AP对的角PCP'就是30°

如图:P是ΔABC内任意一点,求证:AB+AC〉PB+PC

证明:延长BP交AC于点E,则在ΔABE中有:AB+AE>BE即AB+AE>PB+PE又在ΔPEC中有:EP+EC>PC∴(AB+AE)+(EP+EC)>(PB+PE)+PC即AB+AC>PB+PC

如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P′AB.

(1)因为将△PAC绕点A逆时针旋转后,得到△P′AB.所以P点对应P'点,C点对应B点因此,PA=P'A且∠PAP'=∠CAB=60°,所以△P′AB是正三角形(2)因为PA=P'A且∠PAP'=6

如图,已知P是三角形ABC内任意一点,求证:角BPC>角A

证明:∠BPC=180°-(∠PBC+∠PCB);∠A=180°-(∠ABC+∠ACB);∵∠PBC+∠PCB180°-(∠ABC+∠ACB);即∠BPC>∠A.

如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10,若将三角形PAC绕点A逆时针旋转后,得到三角形P'A

假定等边△ABC的边长为k,作BC边上的高AD,则BD=k/2,由勾股定理得:AD²=AB²-BD²=k²-k²/4=3k²/4AD=(√3

如图,△ABC是等边三角形,P为三角形内任意一点,边长为1.

(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+

如图,P是三角形ABC内的任意一点.求证:PB+PC大于AB+AC.

题目错了!延长BP交AC于点E,在△ABE中,AB+AE>BE在△PEC中,PE+EC>PC∴AB+AE+PE+EC>BE+PC∴AB+AE+PE+EC>BP+PE+PC(注BE=BP+PE,AE+D

如图,P是正三角形ABC内一点,PA=3,PB=4,PC=5,将线段PA以点A为旋转中心逆时针旋转60度得到线段AP1,

可以将三角形绕顶点A逆时针选60度,使得AB与AC边重合,p点相应点为P',则可看到得到三角形pP'C;pP'=3;(可以知道角pAP'为等边三角形)P'C=pB=4;pC=5;即可知pP'与P'C垂

如图,正ABC中,P为正三角形内任意一点,过P作PD⊥BC、PE⊥AB,PF⊥AC,连AP、BP、CP

如果S△AFP+S△PCD+S△BPE=332,那么△ABC的内切圆半径为(A.1再问:过程呢...再答:由于有根号,所以我没法写,自己去菁优网看看再问:没优点不能看..--再答:

如图,p是正三角形ABC内的一点,若将三角形PAB绕点A逆时针旋转到三角形P'AC,则角PAP'等

∵△P‘AC是△PAC绕点A旋转得到的∴△PAB≌△P’AC∴∠P‘AC=∠PAC∵△ABC是等边三角形∴∠BAC=60°∴∠PAP’=∠P‘AC+∠PAC=∠PAC+∠PAB=∠BAC=60°记得及