如图 pa,pb分别与圆o相切于A,B两点,角P

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:52:33
如图 pa,pb分别与圆o相切于A,B两点,角P
如图,PA,PB分别切圆O与AB两点

证法1:AB·PB-AC·PC=AB·PC-AC·PB(AB+AC)PB=(AB+AC)PCPB=PC;∵PA,PB为切线∴PA=PB=PC;∵AP⊥PC∴∠PAC=∠PCA=45°∠PAB=∠PBA

如图,P是圆O外一点,PA,PB分别与圆O相切于点A,B,点C是弧AB上一点,经过点C作圆O的切线,分别与PA,PB相交

 (1)在直角三角形AOD,COD中; 根据直角斜边(HL)证全等;      OC=OA, OD=OD;三角

如图,PA和PB分别与⊙O相切于A、B两点,作直径AC,并延长交PB于点D,连接OP,CB.

(1)证明:连接AB,∵PA、PB分别与⊙O相切于A、B两点,∴PA=PB且∠APO=∠BPO.∴OP⊥AB  ①.∵AC是⊙O的直径,∴AB⊥CB  ②.由①

如图,PA,PB,CD是圆O的切线,A,B,E是切点,CD分别交PA,PB于C

∠APB=40,那么∠ACE+∠CDP=180-40=140,由于A、B、E均为切点,那么OC平分∠ACE,OD平分∠PDC,所以∠ODE+∠OCE=1/2×(∠ACE+∠CDP)=70,∠COD=1

如图,PA,PB分别与圆O相切于点A、B,圆O的切线EF分别交PA、PB与点E、F,切点C在弧AB上,若PA长为2,则三

分析:由切线长定理知,AE=CE,FB=CF,PA=PB=2,然后根据△PEF的周长公式即可求出其结果.\x0d∵PA、PB分别与⊙O相切于点A、B,\x0d⊙O的切线EF分别交PA、PB于点E、F,

如图,PA,PB,DE分别与○O相切于点A,B,C,△PDE的周长为16cm,○O的半径为6cm,求PO的长

应该是10,链接OA,OB,链接AC,BC,先证明AD=DC,BE=EC;证明如下:oA垂直与Ap;OC垂直与DE;则角OAD=角OCD,而又因为OA=OC则角OAC=角OCD,所以DAE=角DCA,

如图,PA、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交PA、PB于点E、F,切点C在AB上,若PA长为2,则△P

∵PA、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交PA、PB于点E、F,切点C在AB上,∴AE=CE,FB=CF,PA=PB=2,∴△PEF的周长=PE+EF+PF=PA+PB=4.故填空答案

如图,已知P是圆O外一点,PA,PB分别切圆O于A,B,PA=PB=4,C是弧AB上任意一点,过C作圆O的切线分别交PA

∵C、A是圆O的切点∴PA=PC同理,EC=EB∴△PDE的周长等于PA+PB,即8

如图1,点O在角APB的平分线上,圆O与PA相切于点C.(1)求证:直线PB于圆O相切

(1)连结OC作OD⊥PBD为垂足∵圆O与PA相切于点C∴OC⊥PA又OD⊥PB点O在角APB的平分线上∴OD=OC即圆心O到直线BP的距离等于圆的半径∴直线PB于圆O相切2设PO交圆于F∵圆O与PA

如图,点O在∠APB的平分线上,⊙O与PA相切于点C. 求证:直线PB与⊙O相切;

连接OC,过O作ON⊥PB于N∵⊙O与PA相切于点C∴OC⊥PA又∵ON⊥PB且O在∠APB的平分线上∴OC=ON∴直线PB与⊙O相切

如图,点O在∠APB的平分线上,⊙O与PA相切于点C.(1)求证:直线PB与⊙O相切;

(1)证明;过点O作OD垂直PB于D所以角ODP=90度因为圆O与PA相切于C所以角OCP=90度所以角OCP=角ODP=90度因为点O在角APB的平分线上所以叫OPC=角OPD因为OP=OP所以三角

已知如图,PA,PB分别于圆O相切于点A,B,PO与圆O相交于点D,且PA=4cm,PD=2cm,求半径

已知PA,PB分别于圆O相切于点A,B,∴AO⊥PA,BO⊥PB.∴△AOP是直角三角形.AO²+PA²=PO²,PO=PD+AO.AO²+PA²=(

如图,已知PA、PB分别与⊙O相切于点A、B,点C在PB上,且CO∥PA,CD⊥PA于点D.

(1)证明:如图,连接OA,则OA⊥AP,∵CD⊥AP,∴CD∥OA,∵CO∥AP,∴四边形ANMO是矩形,∴CO=DA;(2)连接OB,则OB⊥BP∵OA=CD,OA=OB,CO∥AP.∴OB=CD

如图,PA、PB切圆O于点A、B.M为圆O上一点,过M作EF与圆O相切,交PA、PB于E、F两点,且PA=12cm.求三

PB=PA=12由切线性质知,EA=EM,FB=FM所以三角形PEF的周长=PE+PF+EF=PE+PF+EM+FM=(PE+EA)+(PF+FB)=PA+PB=24

如图,点O在角APB的平分线上,圆o与PA相切于点c. (1)求证:直线PB与圆O相切;

(1)证明:连接OC,作OD⊥PB于D点.∵⊙O与PA相切于点C,∴OC⊥PA.∵点O在∠APB的平分线上,OC⊥PA,OD⊥PB,∴OD=OC.∴直线PB与⊙O相切;设PO交⊙O于F,连接CF.∵O

如图,PA、PB分别与⊙O相切于A、B两点,且OP=2,∠APB=60°.若点C在⊙O上,且AC=2,则圆周角∠CAB的

连接AB,∵PA、PB分别与⊙O相切于A、B两点,且∠APB=60°,∴∠PAO=∠PBO=90°,∠OPA=12∠APB=30°,∴∠AOB=360°-∠PAO-∠PBO-∠APB=120°,∵OA

如图,PA、PB分别与圆O相切于A、B两点,作直径AC,连接BC,求证:OP‖CB

证明:连接AP∵PA,PB是圆O的切线∴PA=PB,∠APO=∠BPO∴PO⊥AB∵AC是圆O的直径∴∠ABC=90°即BC⊥AB∴PO‖BC

如图,PA切⊙O于A点,PO平行AC,BC是⊙O的直径.请问:直线PB是否与⊙O相切?并证明.

PB与圆O相切,理由如下:连结OA∵PA切圆O于A,∴∠OAP=90°∵AC∥OP,∴∠C=∠POB,∠CAO=∠AOP,∵OA=OC,∴∠C=∠CAO,∴∠AOP=∠BOP,又∵OP=OP,OA=O