如图 am是三角形abc的中线 ∠DAM=∠BAM CD∥

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:52:41
如图 am是三角形abc的中线 ∠DAM=∠BAM CD∥
如图,AD是三角形ABC的中线,求证

证明:∵三角形任意两边之和大于第三边∴AD+BD>AB,AD+DC>AC两式相加得:2AD+BD+DC>AB+AC∵D是BC中点∴2BD=BD+DC∴2AD+2BD>AB+AC∴AD+BD>二分之一(

已知:如图,在三角形ABC中,AM是边BC上的中线.求证:AM

延长AM至N,使MN=AM,连结BN,BM=CM,MN=AM,AN,AN=2AM,∴AM

如图:AM是三角形ABC的中线,AE垂直于AB,AG垂直于AC,AE等于AB,AG等于AC,求证:EG垂直于AM

  如图,延长AM到F,使AM=FM,并反向延长交EG于D,连结BF那么△BMF≌△CMA(SAS),BF=AC=AG,∠FBM=∠ACM,进而BF∥AC又∠BAE=∠CAG=90

如图 在三角形abc中,AB>AC,AM是BC边上的中线,求证AM>二分之一(AB-AC)

自C作AM的平行线,与BA交一点,然后用中线定理结合三角形两边之差小于第三边定理即可证明再问:能给我过程吗再答:按我上面说的,假设交点为D,则2AM=CDAB=AD三角形中位线定理AD-AC

如图,AM为三角形ABC的中线,四边形ABDE、ACFG均为正方形,求证:AM=二分之一EG

做BH//AC,CH//AB,BH与CH交于H点,ABHC为平行四边形,连接HM,因M是BC的中点,A、M、H共线,AM=AH/2.因AB//CH,所以角BAC+角ACH=180度;角BAE=角CAG

如图,三角形ABC中,AM是BC边上的中线,求证:AM<二分之一(AB+AC)

延长AM到点D,使MD=AM,连接BD易证△AMN与△BMD全等所以BD=AN在△ABD中,AD

如图,三角形ABC中,AM是BC边上的中线,求证AM<二分之一(AB+AC)

(∵2AM<AB+AC,2CM<AB+AC∴2AM=2CMAM=CM)这里错误2AM<AB+AC,2CM<AB+AC不能推出AM=CM例如2X3<9,2X4<9

如图,三角形ABC中AD是高AM是中线,求证AB+AM+1/2BC>AD+AC

∵三角形ABC中AD是高∴三角形ABD是直角三角形AB是斜边AD直角边∴AB>AD(1)∵AM是中线∴M是BC的中点,CM=1/2BC(2)∵在三角形AMC中,AM+CM>AC(3)∴综合(1)(2)

如图,在三角形abc中,ab大于ac,am是bc边的中线.求证am大于2分之一(ab-ac)

根据三角形两边之和大于第三边,两边之差小于第三边,可知AM+MB>AB   (1)MC-AM<AC   (2)(1)-(2),得(AM+MB)-(MC-AM)>AB-AC即 2AM>AB-AC所以 A

如图AD是三角形ABC的中线,CE 是三角形ACD的中线,三角形ACE的面积4cm平分,求三角形ABC的面积

分析:根据三角形的面积公式,得△ACE的面积是△ACD的面积的一半,△ACD的面积是△ABC的面积的一半.∵CE是△ACD的中线,∴S△ACD=2S△ACE=8cm².∵AD是△ABC的中线

如图,若三角形ABC的面积是4平方厘米,AD是三角形ABC的中线,BE是三角形ABD的中线,求三角形BDE的面积.

∵AD是三角形ABC的中线∴AD把三角形ABC分成面积相等的两个三角形∴三角形ABD的面积是2平方厘米同理,BE是三角形ABD的中线,BE把三角形ABD分成面积相等的两个三角形∴三角形BDE的面积是1

如图,在三角形ABC中,AM是BC边上的中线.求证:AM大于二分之一(AB-AC)

延长AM至P,使AM=AP.再过M作DM平行于BP,交AB于D(利用中位线的性质,D是中点).在三角形ADM中,两边之差小于第三边.即AM大于二分之一(AB-AC).再问:方便上传延长后的图型吗?再答

如图,在三角形ABC中,AM是BC边上的中线.求证:AM大于二分之一(AB+AC)-BM.

证明:在三角形ABM中,根据三角形两边之差小于第三边,得AB-BM

如图,BD是三角形ABC的中线,CE是三角形DBC的中线,三角形ABC的面积是12,则三角形EBC的

因为BD是三角形ABC的中线所以DC=1/2AC所以S三角形BDC=1/2S三角形ABC因为S三角形ABC=12所以S三角形BDC=6因为CE是三角形DBC的中线所以BE=1/2BD所以S三角形BEC

如图,cd是三角形abc的中线,cn=mn,求证am=cb

作AE∥BC交CD延长线于E,∴∠EAD=∠CBD,∠E=MCN∠ADE=∠BDC,且AD=BD∴△ADE≌△BDC∴AE=BC,又∵CN=MN∴∠MCN=∠CMN,又∵∠AME=∠CMN∴∠AME=

如图,AM是三角形ABC的中线,角DAM=角BAM,CD//AB.求证:AB=AD+CD

方法一:延长CD交AM的延长线于E.∵AB∥CE,∴∠ABM=∠ECM、∠BAM=∠CEM,又BM=CM,∴△ABM≌△ECM,∴AB=EC.∵AB∥ED,∴∠DEA=∠BAE,又∠BAE=∠DAE,

如图,在三角形ABC中,∠C=90°,AM是三角形ABC中线,MN⊥AB于N.求证:AN²=BN²+

由题意可知△ANM△ACM△MNB为直角三角形,由勾股定理则有:AN²+MN²=AM^2=AC²+CM²①BM²=MN²+BN²②

如图,在三角形abc中,ab和ac的长度分别是6厘米和4厘米,求bc边上中线am长度的范围

可以构造一个平行四边形ABCD根据两边之和大于第三边,两边之差小于第三边10>AD>2所以5>AM>1

图形的全等如图,AM是三角形ABC的中线,试说明B,C两点到AM的距离相等!

如图,分别过点B、C向中线AM做垂线.证明ΔBEM≌ΔCFM(AAS)BM=CM;∠BME=∠CMF,∠BEM=∠CFM=90°