如图 ab是圆o的直径 点c d在圆o上,且bc=6cm

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:13:13
如图 ab是圆o的直径 点c d在圆o上,且bc=6cm
如图,AB是圆O的直径,弦CD交AB于点p,角APD=60°

过O点做OE垂直CD于E所以OE垂直平分CD因为AP=5,BP=1所以AB=6=直径,即半径=3所以OP=OB-BP=3-1=2因为角APD=60度,三角型OPE是直角三角型所以EO=根号3在三角型O

如图AB是圆O的直径,弦CD垂直AB于点H,G是圆O上一点,E点在CD的延长线上,连结EG交AB的延长线于F,KE=GE

1、连接OG∵KE=GE∴∠EGK=∠EKG=∠AKH∵OA=OO,那么∠OAG=∠OGA=∠HAK∵AB⊥AD,那么∠AHK=90°∴∠AKH+∠HAK=90°即∠EGK+∠OGA=90°∴∠OGE

如图,AB是圆O的直径,点C在圆O上,∠BOC=108°,过点C作直线CD分别交直线AB和圆O于点D、E,连接OE,DE

设∠CDB为X,∠CEO为YX+2(180-Y)=180Y=X+(180-Y)解这两个方程组得y=∠CEO=138°X=∠CDB=96°

如图,AB是圆o的直径,弦CD⊥AB于点P,若AB=20,AP:PB=1:4,则CD=

利用相交弦定理∵AB=20AP:PB=1:4∴AP=16,PB=4∵AB⊥CD,AB是直径∴P是CD中点(垂径定理)∵AP*PB=CP*PD(相交弦定理)∴PC=PD=8CD=16

如图,AB是圆O的直径,点P在AB的延长线上,∠APC=∠APE.求证:弦CD=EF

过点O分别作PC、PE的垂线,垂足为M、N.因为∠APC=∠APE,OM⊥PC,ON⊥PE,所以OM=ON(角平分线的性质).所以,CD=EF(垂径定理的推论).

如图,AB是圆O的直径,CD为弦,CD⊥AB于点E

∵CD⊥AB于点E∴根据勾股定理得(16÷2)²+(AO-4)²=(AO)²∴AO=10

如图,在圆O中,弦CD与直径AB垂直于H点,E是AB延长线上一点,CE交圆O于F点

(1)证明:连接FA.∵AB为圆O直径,所以∠AFB=90°,∴∠AFD+∠DFB=90°,∠CFA+∠BFE=90°.∵弦CD与直径AB垂直于H,∴由垂径定理,得弧CA=弧DA,∴∠CFA=DFA.

如图,已知AB是圆O的直径,点D在AB的延长线上,且AC=CD,点C在圆O上,角CAB= 30度,求证:DC是圆O的切线

∵AC=CD∴∠CAB=∠CDB=30°连接OC∵OA=OC∴∠CAB=∠OCA=30°∴∠COD=60°∴∠OCD=90°C在圆O上∴DC是圆O的切线

如图 ab是圆o的直径,点C在园O上运动与AB两点不重合,弦CD垂直AB,CP平分∠OCD交点P.在点c的运动过程中,点

额.其实你都看到答案了,只要在进一步一点点就好了连结OP因为OC=OP所以角OCP=角OPC因为∠OCD的平分线交⊙O于P所以角DCP=角OCP所以角DCP=角OPC所以无论何时,CD平行OP又因为o

如图,AB是圆O的直径,点C在圆O上,∠BOC=108°,过点C作直线CD分别交直线AB和圆O于点D、E,连接OE,

(1)DE=AB/2=OE,则:∠EDO=∠EOD=(1/2)∠OEC;OE=OC,则:∠OCE=∠OEC=∠EDO+∠EOD=2∠CDB.∵∠BOC=∠OCE+∠CDB=3∠CDB.即108°=3∠

如图,AB是圆O的直径,点D在圆O上,∠DAB=45°,BC平行AD,CD平行AB

(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为1,求图中阴影部分的面积(结果保留π)分析:(1)直线与圆的位置关系无非是相切或不相切,可连接OD,证OD是否与CD垂直即可.(2)

如图,在圆O中,AB=AC,AD是圆O的直径.试判断BD与CD

∵AD是直径∴弧ABD=弧ACD∵AB=AC∴弧AB=弧AC∴弧ABD-弧AB=弧ACD-弧AC即弧BD=弧CD∴BD=CD

如图三角形ABC的三个顶点在⊙上,AE是圆O的直径,CD⊥AB于点D,证明AC*BC=AE*CD.

连接BC∠ACE=90°sinAEC=AC/AE∠AEC=∠ABCsinABC=CD/BC=sinAEC=AC/AECD/BC=AC/AEAC×BC=AE×CD

已知:如图,AB是半圆的直径,O为圆心,点C在圆O上,CD⊥AB于点D,若AD=2,CD=4,AB长?

说的真模糊~还不知道你今年多大...姑且认为你不是在耍人吧.嗯,说正题.连结AC,BC(这个圆里的三角形要记住.因为有很重要的结论:CD的平方等于AD乘BD,那么BD=8,则AB=10)若是大题,忽略

如图,AB是圆O的直径,弦CD垂直AB于点M,连结CO,CB.

(1)连结AC、易知△ACM与△CBM相似,所以CM^2=AM×BM,代入得CM=4,所以CD=8(2)角COM=角OCB+角B=2角OCD,因此,角COM=60°,角OCD=30°,可知CB=2CM

如图,AB是圆O的直径,CD⊥AB于点E,交圆O于点D,OF⊥AC于点F.

这个很简单的.我想你要自己学会思考问题.这是一种能力,因为日后的生活中,很问题都自己去思考.到了高中,几何和函数一体的.所以你得自己去弄明白.(1):第一条:∵AB是直径,∴∠ACB=90'根据勾股定