如图 ab是圆o的直径 cd垂直于ab∠cdb=30°

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:10:08
如图 ab是圆o的直径 cd垂直于ab∠cdb=30°
如图,已知AB是圆O直径,弦CD垂直AB于E,CD=16cm,AB=20cm,求OE的长

连接CO因为弦CD⊥直径AB所以CE=DE=1/2CD=8厘米在直角三角形COE中,根据勾股定理的:OE=√(CO²-CE²)=√(10²-8²)=6厘米希望采

如图.AB是圆O的直径,弦CD垂直于AB,角C等于30°,CD=23,则扇形阴影的面积

连接CO∵CD为⊥于直径的弦∴CE=DE∵∠C=30°∴∠A=60°∵OA=OC∴△ACO为等边三角形∴AC=AO=OD∵∠AEC=∠DEO=90°∴△ACE≌△ODE(HL)∴S△ACE=S△ODE

如图,AB为圆O的直径,CD垂直于点D,OF垂直于AC于点F

一:①:BC=BD②:BC=根号(AB平方-AC平方)③:BC=根号(CE平方+BE平方)二连结CO∵∠D=30°又∵∠COB与∠D同弧∴∠COB=2∠D=30º×2=60º∴∠C

如图,AB是圆O的直径,CE是切线,切点为C,BE垂直CE于E,叫圆O于D,求证AC=CD

证明:连接OC,OD∵CE是切线∴OC⊥CE∵BE⊥CE∴OC//BE∴∠AOC=∠ABD∵∠AOD=2∠ABD【同弧所对的圆心角等于2倍的圆周角】∴∠AOC=∠COD∴AC=CD【相等圆心角所对的弦

如图,AB是圆O直径,C是弧BG的中点,CD垂直AB于D,BG交CD,AC于E,F

证明:(2)连接BC.弧BC=弧GC,则∠CBE=∠BAC.AB为直径,则∠ACB=90°,又CD⊥AB.∴∠BCE=∠BAC(均为∠ACE的余角).∴∠BCE=∠CBE(等量代换),得CE=BE.则

如图.AB是半圆O的直径,CD垂直AB于D.CE是切线.E为切点

题目不完整,我估计F是CD与BE的交点连接EO,则CE垂直于EO,则角CEF+角OEF=90度,又因为AB为直径,故角AEB=90度,即角AEO+角OEF=90度,故角AEO=角CEFCE为切线,则角

如图、已知AB为圆O的直径、CD是弦、且AB垂直CD于点E,连接AC、OC、BC.

1)因为AB为圆O的直径、CD是弦、且AB垂直CD所以弧BC=弧BD所以∠BCD=∠A因为OA=OC所以∠A=ACO所以∠ACO=∠BCD2)因为AB为圆O的直径、CD是弦、且AB垂直CD所以CE=D

如图AB是圆O的直径,BC是圆O的弦,OD垂直CB于点E,交弧BC于点D,连接CD.

拜托啦,很急……今晚就要!详细过程哦!AB是圆O的直径,BC是圆O的弦,OD垂直CB,垂足为E,交弧BC于点D,连接AC,CD,DB设角CDB=α,角ABC=β,试找出α与β之间的一种关系式并给予证明

如图,AB是圆O的直径,AB垂直于弦CD于点P,且P是半径OB的中点,CD=6,则圆O的直径为

CP*CP=AP*PB(三角形APC与三角形BPC相似得出)AP:PB=1:3可以得出PB=根号3所以OB=2PB=2倍根号3

如图 ,AB为圆O的直径,CD是弦,且AB垂直CD于E.连接AC、OC、BC.求证:角ACO=角BCD

证明:因为OA=OC所以∠ACO=∠A因为AB为圆O的直径,CD是弦,且AB垂直CD于E所以弧BC=弧BD所以∠A=∠BCD(等弧所对的圆周角相等)所以∠ACO=∠BCD供参考!JSWYC

如图,已知AB是圆O,直径,E是OB的中点,弦CD垂直AB于E,如果CE=3,那么直径AB长是()

E是OB中点,所以OE=1/2OB=1/2OC,由此可以得出∠OCE=30°,再用三角函数可以算出OC长2√3,那AB就是4√3,但你给的四个选项里没有.不是你打错了,就是卷子有问题.

如图,AB是圆O的直径,CA垂直于圆O所在的平面,D是圆周上一点,求证∶BD垂直于CD

证明∵AB是直径∴AD⊥BD∵CA⊥面ADB∴CA⊥BDCA∩AD=A∴BD⊥面CAD∴BD⊥CD如果你认可我的回答,请点击“采纳回答”,祝学习进步!手机提问的朋友在客户端右上角评价点【评价】,然后就

如图,AB是圆O的直径,弦CD垂直于AB,∠CDB=30°CD=2根号3

解;因为AB是圆的直径,CD是弦,CD⊥AB与E,所以由垂径定理,CE=ED=1/2CD,弧BC=弧BD,由圆周角和圆心角的关系得∠CDB=1/2∠COB,因为∠CDB=30°,所以∠COB=60°.

如图,AB是圆O的直径,CD是弦,AE垂直CD于E,BF垂直CD于F 1.求证EC=DF 2.若AB=10,CD=8,求

(1)证明:过点O作OG⊥CD于G,∵AE⊥EF,OG⊥EF,BF⊥EF,∴AE∥OG∥BF,∴OAOB=GEGF又∵OA=OB,∴GEGF=OAOB=11,∴GE=GF,∵OG过圆心O,OG⊥CD,

如图,AB为圆O的直径,CD是弦,AB垂直CD于E,若角ACO=40°

10、∵OA=OC∴∠OAC=∠ACO=40°∵AB是⊙O的直径,AB⊥CD∴弧BC=弧BD(垂径定理:垂直于弦的直径,平分弦及弦所对的的两条弧)∴∠BCD=∠OAC=40°(同圆内,等弧所对的圆周角

如图,已知AB为圆O的直径,CD是弦,AB垂直CD于E,OF垂直AC于F,BE=OF

证明:在三角形ABC中,AB是直径,C是圆上的点所以角ACB=90,即BC垂直于ACOF垂直AC所以OF平行BC∵AB⊥CD∴CE=1/2CD=5√3cm.在直角△OCE中,OC=OB=x+5(cm)

如图 ab是圆o的直径 弦cd垂直ab于m点 p是cd延长线上的一点 pe与圆o相切于点e be交cd于f 求pf方=p

这是一道关于圆的题目,下面开始证明证明:连结AE∴∠AEB=90º,∠PEB=∠EAB(弦切角定理)∵CD⊥AB,∴∠BFM=∠BAE=∠PEF∴PE=PF连接CE,ED∵∠PED=∠PCE

如图,AB是圆O的直径,弦CD垂直AB于点M,连结CO,CB.

(1)连结AC、易知△ACM与△CBM相似,所以CM^2=AM×BM,代入得CM=4,所以CD=8(2)角COM=角OCB+角B=2角OCD,因此,角COM=60°,角OCD=30°,可知CB=2CM