如图 AB是⊙O的直径点D的延线上BD=OB点C在圆上,CBA
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:19:52
这里同初三滴~刚考完期末1.证明:设DC与AB的交点为F连接BD,由题可知:∠BDA=∠BCA=90°∵∠BCD=∠ACD=45°∴BD=AD,∠DBA=∠DAB=45°由∠DBA=∠ACD=45°∠
连接OC,∵直线l与⊙O相切于点C,∴OC⊥CD;又∵AD⊥CD,∴AD∥OC,∴∠DAC=∠ACO;又∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB.
(1)证明:如图,连接OC,∵DC切⊙O于C,∴OC⊥CF,∴∠ADC=∠OCF=90°,∴AD∥OC,∴∠DAC=∠OCA,∵OA=OC,∴∠OAC=∠OCA,∴∠DAC=∠OAC,即AC平分∠BA
1)连接DO'角O'DB是直角,设大圆半径R小圆半径r,则BD平方=O'B平方-DO'平方即为BD平方=(2R-r)平方-r平方整理得BD平方=4R平方-4Rr因为CE垂直AB,可用射影定理得EB平方
证明:(1)∵CD是⊙O的切线,∴∠OCD=90°,即∠ACD+∠ACO=90°.①(2分)∵OC=OA,∴∠ACO=∠CAO,∴∠AOC=180°-2∠ACO,即∠AOC+2∠ACO=180°,两边
(1)结论:DE⊥BC.理由:连接OD,∵AB是⊙O的直径,∴OA=OB.∵AD=CD,∴DO∥BC.又∵DE是⊙O的切线,∴DE⊥DO,即∠ODE=90°.∴DE⊥BC.(2)连接BD,∵AB是圆的
(1)证明:∵AB为⊙O的直径,∴∠ACB=90°(1分)∵CD⊥AB,∴∠DEB=90°,∴∠ACB=∠DEB(2分)又∵∠A=∠D,∴△ACB∽△DEB.(3分)(2)连接OC,则OC=OA,(4
AB=AC.证法一:连接AD.∵AB是⊙O的直径,∴AD⊥BC.∵AD为公共边,BD=DC,∴Rt△ABD≌Rt△ACD(SAS).∴AB=AC.证法二:连接AD.∵AB是⊙O的直径,∴AD⊥BC.又
AB=AC.证法一:连接AD.∵AB是⊙O的直径,∴AD⊥BC.∵AD为公共边,BD=DC,∴Rt△ABD≌Rt△ACD(SAS).∴AB=AC.证法二:连接AD.∵AB是⊙O的直径,∴AD⊥BC.又
如图,连接BD,AD.根据已知得B是A关于OC的对称点,所以BD就是AP+PD的最小值,∵AD=2CD,而弧AC的度数是90°的弧,∴AD的度数是60°,所以∠B=30°,∵AB是直径,∴∠ADB=9
1个用45度角可以证,第二个OH=1再问:请问,是怎么证明第二问的,能给个提示吗再答:延长CB与AE相交然后利用等边直角三角形可以求,不懂可以再问我哈
90°解析:这个用到了同狐所对的圆周角相等.连接AE,BE,那么∠EAB=∠D(同狐),∠EBA=∠C(同狐)∵∠EAB+∠EBA=90°∴∠C+∠D=90°
很高兴为您解答! 分析:(1)连接OC.欲证FC是⊙O的切线,只需证明FC⊥OC即可;(2)连接BC.利用(1)中的∠AED=∠FEC=∠ECF、圆周角定理求得BC=AB•cos
连接BC∵CE是圆切线∴∠ECB=∠CDB=20°(弦切角=所夹弧上的圆周角)∵AB是直径∴∠ACD=90°(半圆上圆周角是直角)∵∠CDB=∠CAB=20°(同弧上圆周角相等)∴∠CBA=90°-∠
(1)证明:连接AD、OD,如图,∵AB是⊙O的直径,∴∠ADB=90°,∵AB=AC,∴AD垂直平分BC,即DC=DB,∴OD为△BAC的中位线,∴OD∥AC,而DE⊥AC,∴OD⊥DE,∴DE是⊙
这个很简单的.我想你要自己学会思考问题.这是一种能力,因为日后的生活中,很问题都自己去思考.到了高中,几何和函数一体的.所以你得自己去弄明白.(1):第一条:∵AB是直径,∴∠ACB=90'根据勾股定
证明:连接OC、BC,∵AB是⊙O的直径,∴∠ACB=90°.∵∠CAB=30°,∴∠ABC=60°.∵OB=OC,∴△OBC为等边三角形,∴BC=OB=BD,△BCD为等腰三角形,∠CBD=120°
(1)证明:连接OC.∵FC=FE(已知),∴∠FCE=∠FEC(等边对等角);又∵∠AED=∠FEC(对顶角相等),∴∠FCE=∠AED(等量代换);∵OA=OC,∴∠OAC=∠OCA(等边对等角)
(1)证明:∵CE是⊙O的直径,∴∠CAE=90°,∴∠BAC+∠BAE=90°,∵CD⊥AB,∴∠BAC+∠ACD=90°,∴∠BAE=∠ACD,∵∠BAE=∠BCE,∴∠ACD=∠BCE;(2)∵