如图 ,点ef分别正方形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:59:40
延长CE,BA,交与Q点.首先三角形QAE与三角形CDE,三角形FCB全等,所以QE=DC=AB,另外由于三角形EDC与三角形FCB全等,所以可以证明出CE垂直于FB,所以角BME为直角,因此AM是直
是这道题吧P为正方形ABCD的对角线BD上一点PE⊥BC,PF⊥CD,垂足分别为E,F,求证:PA=EF证明:∵PE⊥BC,PF⊥CD,∠C=90°∴四边形PECF为矩形,连接PC,则PC=EF又∵A
1:延长EF交正方形外交平分线CP于点P,是判断AE与EP的大小关系,并说明理由\x0d2:在AB边上是否存在有一点M,使得四边形DMEP是平行四边形,若存在,请证明,若不存在,请说明理由各位速度
因为BP=5,AB=12根据勾股定理AP=13作EM垂直CD于点M易证△EFM全等于△ABP所以EF=AP=13厘米
(1)由DE=CF及正方形的性质,得出AE=DF,AB=AD,∠BAE=∠ADF=90°,证明△ABE≌△DAF,得出∠ABE=∠DAF,而∠ABE+∠AEB=90°,利用互余关系得出∠AOE=90°
因为是正方形,所以AB=BC=CD=ADDF=DC/4=AD/4AE=AD/2=2DF因为AD=AB,所以AB=2DE又因为△ABE=∽△DEF=直角△,所以角EAB=角EDF所以△ABE∽△DEF
很高兴为您解答!分析:(1)在AB上取BH=BE,连接EH,根据已知及正方形的性质利用ASA判定△AHE≌△ECP,从而得到AE=EP;(2)先证△DAM≌△ABE,进而可得四边形DMEP是平行四边形
,在AB上取BM=BE,连接EM,∵ABCD为正方形,∴AB=BC,∵BE=BM,∴AM=EC,∵∠1=∠2,∠AME=∠ECP=135°,∴△AME≌△ECP,∴AE=EP;(3)存在.顺次连接DM
(1)AE=EP.证明:设AB=X,BE=Y,则EC=X-Y.作PG垂直BC的延长线于G,易知PG=CG,设∠BAE+∠AEB=90°=∠AEB+∠PEC,则:∠BAE=∠PEC;又∠B=∠PGE=9
由题意可知EF=FG,FC=BEFC=FG*tg30°=EF*tg30°∵BC=2FC+EF=2tg30°*EF+EF=(2tg30°+1)EF∴BC:EF=(2tg30°+1)EF:EF=(2tg3
证明:(1)∠EAF的大小没有变化.根据题意,知AB=AH,∠B=90°,又∵AH⊥EF,∴∠AHE=90°∵AE=AE,∴Rt△BAE≌Rt△HAE,∴∠BAE=∠HAE,同理,△HAF≌△DAF,
证明:连接PC.∵四边形ABCD是正方形∴AD=CD又∵BD是正方形ABCD的对角线∴∠ADB=∠CDB=90°在△ADP与△CDP中AD=CD{∠ADB=∠CDBPD=PD∴△ADP≌△CDP(SA
过H作HN垂直AB于N,过E作EM垂直BC于M,EF交MN于O,四边形EDCM和CHNB是矩形,角EMF=角HNG=90度,EM=CD=BC=HN,EM垂直HN,角FEM=90度角EOH=角GHN,三
BC:EF=(BE+EF+FC):EF=1+BE:EF+FC:EF,因为BE:EF=FC:EF=FC:FG=ctg60(如果这个条件不能用的话就不知道怎么做了,或者说你知道斜三角形的三边比例也行),结
(1)证明:∵BE=DF,BC=CD,∠EBC=∠CDF,∴△CEB≌△CFD,∴CE=CF;(2)证明连接AG,CG在Rt△EAF中,∵G是斜边EF的中点,∴AG=GE=GF,又∵△EBC≌△FDC
AD=BC,DD‘=BB‘→AD‘=B‘C,又AD‘//B‘C→AB‘CD‘为平行四边形→HE//GF同理,有HG//EFEFGH为平行四边形.三角形BCC‘全等于三角形CC‘D(步骤略)→角BC‘C
这个题目辅助线不是画在中间,你看它右上角那个三角形,把它补在图形左边,也就是AB移动到AD的位置,这样可以求证三角形AEF和(那两个小三角形拼成的三角形)全等,边角边
证明:(1)∵ABCD为正方形,∴AD=DC,∠ADC=90°,∠ADB=∠CDB=45°,又DG=DG,∴△ADG≌△CDG,∴∠DAG=∠DCG;(2)∵ABCD为正方形,∴AD∥BE,∴∠DAG
证明:设点E在BC上,点N在CD上,点F在DA上,点M在AB上.又设EF与MN的交点为P过点F作FS⊥BC,交BC于点S;过点N作NT⊥AB,交AB于点T.因为∠B=90°,∠MPE=90°所以∠BM
过H做GG'垂直AD于G',过E做EE'垂直CD于E'四边形ADOE中,∵HOE=HAE=90°,∴∠AHO+∠AEO=180°又∵∠AHO+∠GHG'=180°∴∠GHG'=∠AEO∵AB//CD∴