如图 ,A,B是圆O的直径,点都在圆上,则角BDC=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:40:30
如图 ,A,B是圆O的直径,点都在圆上,则角BDC=
如图,MN是半径为1的圆O的直径,点A在圆O上,角AMN=30度,B为AN弧的中点P是直径MN上一动点PA+PB的最小值

首先,“如图”两字很多余其次,很明显,这是高中数学的典型问题(怀念~)最后,哥几乎是完全忘了,短期内解不出来(不好意思呵)另外再说一句,会这题的绝大多数这时候还在为学业努力奋斗,没有时间上网,所以你这

如图 AB是圆o的直径,PA垂直于圆O 所在的平面,C是圆O 上不同于A,B的任一点.求证

证明:连结AC∵AB是圆O的直径∴∠ACB=90°即BC⊥AC又∵PA⊥圆O所在平面,且BC在这个平面内∴PA⊥BC因此BC垂直于平面PAC中两条相交直线∴BC⊥平面PAC

如图,已知AB是圆o的弦,AB的垂直平分线交圆o于点C,D,交A,B于点E,AB=6,DE:CE=1:3,求圆o的直径

设DE=X,则CE=3X因为弦的垂直平分线经过圆心所以CD是直径所以AE=BE=AB/2=3因为AE^2=CE*DE所以3X^2=9所以X=√3所以CD=4X=4√3即圆O的半径是4√3

如图,已知AC是圆O的直径,PA切圆O于点A,B是圆O上一点,PB=PA

(1)连接OB、OP△POA和△POB中PA=PB,PO=PO,AO=BO(都是半径)所以△POA≌△POB,∠PAO=∠PBO因为PA为切线,所以∠PAO=90因此,∠POB=90.PB为圆切线(2

如图,AB是圆O的直径,直线a,b是圆O的切线,A,B是切点,则a,b有怎么样的位置关系?

a‖b∵a是圆O切线∴a⊥AB(切线与半斤垂直)∵b是圆O切线∴b⊥AB∴a‖b(内错角相等都是90度,两直线平行)

如图,圆O沿直线L滚动,已知圆O的半径是0.4cm,AB是圆O的一条直径,当圆O沿地面滚动时,点A,B到L的距离之和

设AC、BD为点A、B到直线l的距离线段,C、D是垂足.则ACDB构成直角梯形,AC、BD是其上下底,直径AB是腰,中位线为圆的半径∴AC+BD=2*半径=0.8

如图,AB是圆O的直径.PA垂直于圆O所在的平面,C是圆O上不同于A,B的任一点,若E.F分别在PB.PC上,AE⊥PB

证明:PA⊥面ABC,→PA⊥BC,又∵AC⊥BC,∴BC⊥面PAC,∵AF在面PAC内,∴BC⊥AF,又∵AF⊥PC,∴AF⊥面PBC,∵PB在面PBC内,∴AF⊥PB,又∵PB⊥AE,∴PB⊥面A

如图,已知AB是圆O的直径,点P在弧AB上(不含点A,B),把△AOP沿OP对着,点A的对应点C正好落在圆O上

1.结论OP∥BC是成立的∵△APO≌△CPO,∴∠APO=∠CPO∴∠APC=2∠APO∠APC和∠ABC都是弧AC对应的圆周角∴∠ABC=∠APC=2∠APO∵∠POB=∠PAO+∠APO=2∠A

如图,AB是⊙O的直径,点C是圆O上异于A,B的任意一点,直线PA垂直于圆O所在平面,PA=2AC,AD垂直于PC

因为PA垂直于圆O所在平面,BC在圆O所在平面内,所以PA垂直于BC因为AB是圆O直径,所以AC垂直于BC所以BC垂直于平面APC所以BC垂直于PC所以角PCA为平面ABC与平面PBC所成角在Rt三角

如图,AB是圆O的直径,点C,D,E都在圆O上,若∠C=∠D=∠E,则∠A+∠B=______.

∵∠C=∠D=∠E,AB为圆O的直径∴弧AC,弧BC,弧DE相等,且等于圆周的14∵弧AC与弧BC的和是半圆,∴弧AC对的圆心角是90°,弧AC对的圆周角是45°,∴弧AC与弧BC与弧DE分别所对的圆

如图,MN是半径为1的圆O的直径,点A在圆O上,角AMN=30度,B为AN弧的中点,P是直径MN上一动点,则PA+PB的

在圆上取一点B',使弧B'N=弧BN,连接AB',交MN于P',连接PB'\x0d显然B,B'点关于MN对称,所以PB=PB'\x0d而在三角形APB'中,PA+PB'>AP'\x0d所以:PA+PB

如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,点P是直径MN上一个动点,则PA+P

过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,连接OB,OA′,AA′,∵AA′关于直线MN对称,∴AN=A′N,∵∠AMN=30°,∴∠A′ON=60°

如图,CD是半径为1的圆O的直径,点A在圆O上,∠AOD=60°,B为弧AD的中点,在直径CD上求作一点P,使PA+PB

作A关于直径CD的对称点E,连接BE,BE与CD的交点即为点P的位置.而BE的的长度即为PA+PB的最小值.因为E是点A关于直径的对称点,所以角EOD等于角AOD等于六十度.而B为弧AD的中点,所以角

如图,PA,PB是圆O的切线,A,B为切点,过点A作圆O的直径AC,并延长交PB于点D,连接OP,CB,求证BC//OP

证明:连接OB∵PA、PB是⊙O的切线∴PA=PB(从圆外一点引圆的两条切线长相等)又∵OA=OB,OP=OP∴△OAP≌△OBP(SSS)∴∠AOP=∠BOP∴∠AOB=∠AOP+∠BOP=2∠AO

如图,ab是圆o的直径,ac是现,od垂直于ac于点d,过点a作圆o的切线ap,ap于od的延长线角于点p,连接pc,b

解题思路:(1)先证OD是△ABC的中位线,即可。(2)连接OC,设OP与圆交于点E,证OC⊥PC即可。解题过程:

如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上不同于A,B的一动点.

(1)证明:∵C在圆O上,∴BC⊥AC,∵PA⊥平面ABC,∴BC⊥PA,∵PC⊂平面PAC,∴BC⊥平面PAC,∴BC⊥PC,∴△BPC是直角三角形.(2)如图,过A作AH⊥PC于H,∵BC⊥平面P

如图,MN是半径为1的○O的直径,点A在○O上,弧AN等于半圆的三分之一,B为弧AN的中点,点P是直径MN上一个动点,则

作AA'⊥MN交圆O于A',连接BA'交MN与P,则此处PA+PB=BA'最小;因B是AN弧的中点,所以BNA'弧等于ANA'弧所对圆心角的¾倍=(π/3)*(3/4)=π/4;又圆O的半径

如图,CD是圆O的直径,以D为圆心,DO为半径作弧,交圆O于点A,B

连接OA,OB,AD,有AO=AD=OD,所以∠AOD=60° 同理,∠BOD=60°,所以∠AOB=120°.还可得出∠AOC=180°-60°=120°,所以∠AOB=∠AOC=∠BOC