如图 ,A,B是圆O的直径,点都在圆上,则角BDC=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:40:30
首先,“如图”两字很多余其次,很明显,这是高中数学的典型问题(怀念~)最后,哥几乎是完全忘了,短期内解不出来(不好意思呵)另外再说一句,会这题的绝大多数这时候还在为学业努力奋斗,没有时间上网,所以你这
证明:连结AC∵AB是圆O的直径∴∠ACB=90°即BC⊥AC又∵PA⊥圆O所在平面,且BC在这个平面内∴PA⊥BC因此BC垂直于平面PAC中两条相交直线∴BC⊥平面PAC
设DE=X,则CE=3X因为弦的垂直平分线经过圆心所以CD是直径所以AE=BE=AB/2=3因为AE^2=CE*DE所以3X^2=9所以X=√3所以CD=4X=4√3即圆O的半径是4√3
(1)连接OB、OP△POA和△POB中PA=PB,PO=PO,AO=BO(都是半径)所以△POA≌△POB,∠PAO=∠PBO因为PA为切线,所以∠PAO=90因此,∠POB=90.PB为圆切线(2
连接BO则角BOA=角A角PBE=2角A∠EOD=5倍角A=70度所以角A=14度
a‖b∵a是圆O切线∴a⊥AB(切线与半斤垂直)∵b是圆O切线∴b⊥AB∴a‖b(内错角相等都是90度,两直线平行)
设AC、BD为点A、B到直线l的距离线段,C、D是垂足.则ACDB构成直角梯形,AC、BD是其上下底,直径AB是腰,中位线为圆的半径∴AC+BD=2*半径=0.8
证明:PA⊥面ABC,→PA⊥BC,又∵AC⊥BC,∴BC⊥面PAC,∵AF在面PAC内,∴BC⊥AF,又∵AF⊥PC,∴AF⊥面PBC,∵PB在面PBC内,∴AF⊥PB,又∵PB⊥AE,∴PB⊥面A
1.结论OP∥BC是成立的∵△APO≌△CPO,∴∠APO=∠CPO∴∠APC=2∠APO∠APC和∠ABC都是弧AC对应的圆周角∴∠ABC=∠APC=2∠APO∵∠POB=∠PAO+∠APO=2∠A
因为PA垂直于圆O所在平面,BC在圆O所在平面内,所以PA垂直于BC因为AB是圆O直径,所以AC垂直于BC所以BC垂直于平面APC所以BC垂直于PC所以角PCA为平面ABC与平面PBC所成角在Rt三角
∵∠C=∠D=∠E,AB为圆O的直径∴弧AC,弧BC,弧DE相等,且等于圆周的14∵弧AC与弧BC的和是半圆,∴弧AC对的圆心角是90°,弧AC对的圆周角是45°,∴弧AC与弧BC与弧DE分别所对的圆
在圆上取一点B',使弧B'N=弧BN,连接AB',交MN于P',连接PB'\x0d显然B,B'点关于MN对称,所以PB=PB'\x0d而在三角形APB'中,PA+PB'>AP'\x0d所以:PA+PB
过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,连接OB,OA′,AA′,∵AA′关于直线MN对称,∴AN=A′N,∵∠AMN=30°,∴∠A′ON=60°
作A关于直径CD的对称点E,连接BE,BE与CD的交点即为点P的位置.而BE的的长度即为PA+PB的最小值.因为E是点A关于直径的对称点,所以角EOD等于角AOD等于六十度.而B为弧AD的中点,所以角
证明:连接OB∵PA、PB是⊙O的切线∴PA=PB(从圆外一点引圆的两条切线长相等)又∵OA=OB,OP=OP∴△OAP≌△OBP(SSS)∴∠AOP=∠BOP∴∠AOB=∠AOP+∠BOP=2∠AO
解题思路:(1)先证OD是△ABC的中位线,即可。(2)连接OC,设OP与圆交于点E,证OC⊥PC即可。解题过程:
北偏东30度,距o点2cm
(1)证明:∵C在圆O上,∴BC⊥AC,∵PA⊥平面ABC,∴BC⊥PA,∵PC⊂平面PAC,∴BC⊥平面PAC,∴BC⊥PC,∴△BPC是直角三角形.(2)如图,过A作AH⊥PC于H,∵BC⊥平面P
作AA'⊥MN交圆O于A',连接BA'交MN与P,则此处PA+PB=BA'最小;因B是AN弧的中点,所以BNA'弧等于ANA'弧所对圆心角的¾倍=(π/3)*(3/4)=π/4;又圆O的半径
连接OA,OB,AD,有AO=AD=OD,所以∠AOD=60° 同理,∠BOD=60°,所以∠AOB=120°.还可得出∠AOC=180°-60°=120°,所以∠AOB=∠AOC=∠BOC