如右图,已知Rt△ABC中,∠ABC-∠A,∠ACB=90°,D为AB边的中点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:01:17
如右图,已知Rt△ABC中,∠ABC-∠A,∠ACB=90°,D为AB边的中点
已知rt△abc中,∠c=90°,tanb=12/5,且它的周长为60,则此rt三角形abc的面积是

设三角形a对应的边为x,b对应的边为y,c对应的边为z,则y/x=12/5x²+y²=z²x+y+z=60解得x=10,y=24,z=26面积为:1/2xy=120

已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于______.

∵Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,∴由勾股定理得:a2+b2=c2,即(a+b)2-2ab=c2=100,∴196-2ab=100,即ab=48,则Rt△ABC的面积为1

在Rt△ABC中

解题思路:熟练掌握三角函数的意义是关键解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/includ

已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是

S=ab/2c^2=a^2+b^2(a+b)^2=a^2+b^2+2ab=c^2+2ab由以上式子可得.ab=2S(1)(a+b)^2=c^2+4S(2)代入数值可得S=24选A

已知Rt△ABC中,∠C=90°,cosA=35

∵∠C=90°,cosA=35,∴b=c•cosA=20×35=12,∴a=c2−b2=202−122=16,∵cosA=35=0.6,∴∠A≈53°8′,∴∠B=90°-∠A≈90°-53°8′=3

勾股定律:已知Rt△ABC中∠C=90?b=14cm,c=10cm则Rt△ABC的面积?

a2+b2=c2=100;(a+b)2=142=196,(a+b)2-(a2+b2)=2ab=196-100=96S=ab/2=2ab/4=96/4=24选A

如图,已知Rt△ABC中.

证明:作AG平分∠BAC,交BD于点G∵∠BAC=90°,AE⊥BD∴∠DAE+∠ADB=ABE+∠ADB=90°∴∠ABG=∠CAF∵△ABC是等腰直角三角形∴AB=AC,∠C=∠BAG=45°∴△

已知Rt△ABC中,∠C=90°,周长为36,直角边AC=12,求Rt△ABC的面积.

∵AC+BC+AB=36,AC=12,∴BC+AB=24,于是BC=24-AB.在Rt△ABC中,AB2=AC2+BC2,得AB2=122+(24-AB)2,从而AB=15,BC=24-AB=9.因此

已知如图在RT△ABC中,∠ACB=90°,CA=CB

证明:∵∠ACB=90∴∠ACD=180-∠ACB=90∴∠ACB=∠ACD∵AC=BC,CD=CE∴△ACD≌△BCE(SAS)∴∠D=∠BEC又∵∠ACD=90∴∠DAC+∠D=90∵∠AEF=∠

已知:如图在RT△ABC中,

过B点作AC的平行线L1过D点作BC的平行线L2,交L1于点G,交AE于J过点E作AC的平行线L3,交L2于点H连接AG交L3于点I则AD=BC=GD,GH=BE=DC=HE那么角AIE=180°-角

已知RT△ABC中,∠ACB=90°,∠MCN=45°

本题存在问题,需补充条件:AC=BC.(即三角形ABC为等腰直角形三角形)(1)证明:作∠BCD=∠ACM,并且CD=CM,则:∠BCD+∠BCM=∠ACM+∠BCM=90°.又AC=CB,则:⊿BC

【二次函数】已知,如图在Rt△ABC中

这不难(1)∵a,b是方程x^2-(m-1)x+m+4=0的两根∴a+b=m-1①a*b=m+4②∴AB2=52=a2+b2=(a+b)2-2ab=(m-1)2-2(m+4)解得m1=6m2=-2(∵

已知Rt△ABC中,∠C=90°,∠A=30°b=6,求Rt△ABC其它两边的长及其面积

a=6*根号3/3=2根号3c=4根号3面积=6根号3

已知Rt△ABC中,∠c=90°,∠a=30°,b=6,求Rt△ABC其它两边的长与面积.

tan30=a/6可求出a=2倍根号3a^2+b^2=c^2得c=4倍根号3S=1/2ab=6倍根号3

已知:Rt△ABC中,∠C=90°,cosA=35

∵∠C=90°,cosA=35,AB=15,∴AC=15×cosA=9,故答案为9.

在Rt△ABC中,已知∠C=90°

判别式等于04(sinA+2)²-4(sin²A+6)=0sin²A+4sinA+4-sin²A-6=0sinA=1/2A=30度则B=60度AC=10且BC/

已知:在rt△ABC与RT△ABC'中 ∠C=∠C'=90 CD C'D'分别是两个三角形斜边上的高

证明:∵在Rt△ACD和Rt△A'C‘D’中,CD/C'D'=AC/A'C'∴△ADC∽△A'D'C'又∵∠ACB=∠A'C'B'∴△ABC∽△A'B'C'得证

已知rt△ABC中,∠C=90º,若a+b=8,c=6,则Rt△ABC的面积是

根据勾股定理a^2+b^2=c^2=36(1)a+b=8(a+b)^2=a^2+b^2+2ab=64(2)(2)-(1)2ab=64-36=28面积=ab/2=28/2/2=7