如何判断平面方程垂直于xoy面

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 23:00:13
如何判断平面方程垂直于xoy面
平行于xoy坐标面,且到xoy面的距离为3,求满足下列条件的平面方程

x+y+z=3像这种方程只要把面看成线就解决了

两个面垂直于同一平面,如何证明两个面的交线垂直与该平面

所用性质定理:如果两个平面垂直,那么经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内.设题中两相交面分别为AB,他们垂直的面为C,AB相交于a在a上任取一不属于C的点m,从m做直线l垂直于C

求过点(1,1,2)且与平面2x-y+z=1和xoy坐标面垂直的平面方程

设其法向量为{A,B,C}方程为:Ax+By+Cz+D=0与平面2x-y+z=1和xoy坐标面垂直,则2A-B+C=0A+B=0解得:C=-3A,B=-A所以方程为:x-y-3z+d=0又过点(1,1

如何证明直线垂直于平面

如果直线和这个平面里的两条相交直线都垂直那么这条直线就垂直于这个平面

两个平面垂直于同一个平面,如何证明它们的交线垂直于这个平面?

如图,两平面相交,交线为OA,因为两个平面同时垂直与红色平面,所以,OA垂直OB,OA垂直OC,根据(一条直线同时垂直于一个平面内的两条相交直接,即这条直线垂直与这个平面),所以OA垂直与面(红色)传

如图所示,真空中有一垂直于xOy平面的匀强磁场,一电子

(1)自己画图,设匀强磁场向里(也可向外,与这个没有关系),设圆心为O',OO'跟速度方向垂直,说明圆心在x轴上,电子穿过x轴时构成一个半圆,由几何关系可求得直径D=L/cos30=2L/根号3,R=

求教 求满足条件的平面方程:(1)平行于XOY坐标面,且到XOY面的距离为3

(1)z=-3或z=3.(2)设方程为Ax+By+Cz+D=0,将A、B、C三点坐标分别代入,可得-A+B+2C+D=0;2A+C+D=0;-2B+3C+D=0;解得B=A,C=2A,D=-4A,取A

异面直线a,b判断:过a一定有一个平面垂直于b?为什么并证明.

该结论不成立,若过a有一个平面垂直于b,由b垂直于这个平面,则b垂直于这个平面内的a,而题中并没有a⊥b这个条件.

1、过A(3,2,4)且平行于xOy面的平面方程

2、xoy面的方程为z=0,因此所求平面方程为z-4=0.2、平行于x轴的平面方程可设为By+Cz+D=0,将M1、M2坐标代入,可得2B+C+D=0,8B-C+D=0,解得B=-D/5,C=-3D/

平面方程什么样的与xoy面平行?

三维空间中,z=c(c是任意一个常数),这样的平面与xoy面平行再问:同理,x=c,y=c也平行与那2个面再答:x=c平行于yoz面y=c平行于x0z面

XOY坐标面的平面方程?

z=0再答:二十年教学经验,专业值得信赖!如果你认可我的回答,敬请及时采纳,在右上角点击“评价”,然后就可以选择“满意,问题已经完美解决”了。

平行于XOY坐标面且过点Po(-3,4,7)的平面方程为______

因为所求平面平行于平面XOY故所求平面法向量可以令为:n=(0,0,1)又因为过点P0=(-3,4,7)所以平面方程(点法式):z-7=0

求坐标式参数方程和一般方程: 通过点M1(1,-5,1)和M2(3,2,-2)且垂直于小xOy坐标面的平面.

搞定啦.xOy平面的表达式是z=0,所以xOy平面的法向量为Ψ(0,0,1)M1M2形成的向量为:(2,7,-3)设所求平面的法向量为:n(a,b,c)则向量n垂直于向量m1m2且向量n垂直于向量Ψ则

左手坐标系中,平行于xoy面且与z轴相交于(0,0,1)的平面方程

这个都对的.只是两边同时乘以-1,没有什么区别

求通过点m1(1,-5,1)和m2(3,2,-2)且垂直于xoy平面的平面方程,请问这样做哪里错了嘛?

你代入都代错了再问:不小心写错了,不过都一样的啦再答:我算的也是这结果啊。。

(2013•攀枝花模拟)如图所示,xoy为某坐标平面,第一象限内有垂直于xoy平面的磁场,MN左则磁场垂直于xoy平面向

(1)不能进入Ⅱ区域的粒子其连轨道半径小于等于d,设粒子进入磁场的速度为v,在磁场中运动的半径为r,则由牛顿定律及洛仑兹力公式得:qvB=mv2r      r≤d联立以上二式得:v≤qBdm(2)设

大学解析几何 求通过点M1 (1,-5,1)和M2(3,2,-2)且垂直于XOY坐标面的平面的坐标式参数方程和一般方程

设平面上任意一点P(x,y,z)且M1M2={2,7,-3}法向量n={0,0,1}以这两个向量作为平面的基向量,OP-OM1=aM1M2+bn即可以得到.

平面XOY用方程如何表示

动员了班上好多同学的一致答案是用法向量,法向量就是与给定的平面垂直的向量.但一般为了用着方便,化成最简的形式.比如最简单的空间直角系OXYZ与xoy平面

如何求通过点m1 m2且垂直于xoy坐标面的平面的坐标式参数方程和一般方程

你把M1、M2的坐标给出来就可以求了!【设方程为Ax+By+D=0】