如何判断与对角型矩阵相似

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:38:32
如何判断与对角型矩阵相似
证明实对称矩阵与对角矩阵相似

求此矩阵的特征多项式|A-λE|比较麻烦.2-λ1/n1/n1/n……1/n1/n4-λ1/n1/n……1/n.1/n1/n1/n1/n……2n-λ先说明特征值不等于2k-1/n,k=1,2,...,

知道一个方阵的特征值及其特征向量,如何求它是否与对角矩阵相似

n阶方阵与对角矩阵相似的充分必要条件是它有n个线性无关的特征向量.你已知道一个方阵的特征值及其特征向量,只需看线性无关的特征向量是否有n个就行了.其实是这样:i重特征值都有i个线性无关的特征向量,则A

判断两个矩阵相似与合同?

不对的,相似矩阵的性质1.相似矩阵有相同的特征值和特征多项式2.相似矩阵的行列式和迹都相同以上两条性质逆命题都不成立你的第二个问题我也从来没有听说过我只知道两个实对称矩阵在实数域上合同当且仅当他们的秩

判断两个矩阵相似的充要条件是相似同一个对角阵吗?

这算是一个充要条件吧,不过一般描述为:两个矩阵相似的充要条件是它们有相同的特征值且相同特征值的重数也相同再问:你说的不对吧,特征值相等(包括重数)如果可以对角化,特征值在对角阵的位置也可以不一样啊。矩

证明实对称矩阵一定能够与对角矩阵相似

n阶实对称矩阵A算出特征根然后可以求出n个特征向量以n个特征向量为列向量的矩阵设为P则A=P∧P^(-1),其中∧为相似的对角矩阵,对角线上的值即为特征根.这是具体的求法,严格的证明需要用到矩阵二次型

矩阵可对角化,那么矩阵可相似于对角阵是不是和正交相似与对角阵一个意思

正交相似与对角阵说明对应不同特征根的特征向量相互垂直.而相似于对角阵不能保证对应不同特征根的特征向量相互垂直.例如,如果A=[1,1;0,2]A(1,0)^T=(1,0)^TA(1,1)^T=2(1,

一个矩阵与对角矩阵相似求未知数我拍照了.

5,y,-4是A的特征值.所以tr(A)=1+x+1=5+y-4,|A|=5y(-4)=-20y再问:第二句话tr什么意思再答:矩阵的迹,就是对角线上元素的和。再问:??再问:元素和相等?再答:htt

刘老师,n阶矩阵A与对角矩阵相似时,必须满足的条件为?

必须满足A有n个线性无关的特征向量---事实上这是A可对角化的充要条件或者A的k重特征值有k个线性无关的特征向量

与实对称矩阵相似、合同的对角阵是否唯一,能否利用这个性质判断矩阵相似、合同的问题

实对称矩阵相似则合同,合同不一定相似实对称矩阵相似于对角矩阵是唯一的,合同不唯一矩阵A的特征值为1,4,4,与B不相似(特征值不同)但A,B合同(正负惯性指数相同)

正交矩阵是不是单位矩阵,求正交矩阵P使A与对角矩阵相似,为什么单位化

正交矩阵不一定是单位矩阵,但单位矩阵是正交矩阵矩阵正交的充分必要条件是其列向量是标准正交向量组,故必须正交化,单位化

A^m=A,证明A与对角矩阵相似

注意到f(λ)=λ^m-λ=λΠ_{k=0}^{m-2}(λ-ζ_{m-1}^k)是A的0化多项式,其中ζ_{m-1}=exp{2πi/(m-1)}.而λ,λ-ζ_{m-1}^k(k=0,1,...,

设上三角矩阵A的主对角线上元素互异,证明A能与对角矩阵相似

根据“上三角矩阵A的主对角线上元素互异,”可以推得“上三角矩阵A有n个互不相等的特征值(为主对角线上元素)”所以可得A能与对角矩阵相似

矩阵与对角矩阵相似的充要条件

定理5.3,因为其实最小多项式就是等于第N个不变因子(易证),第N个不变因子若没有重根,则说明其特征多项式是一次因式的乘积,所以是可以对角化的

对角矩阵求法2 0 13 1 34 0 5求他的对角矩阵并判断他们是否相似

|λ-20-1||-3λ-1-3|=﹙λ-1﹚²﹙λ-6﹚|-40λ-5|λ=1时|-10-1||-30-3||-40-4|的秩=1相应的齐次方程组有两个线性无关的解,即λ=1有两个线性无关

1.怎样判断一个矩阵是否与对角型矩阵相似?

1.是否有n个特征值.2.只有对角线上值不为零的矩阵.=============好好看书啊

分块对角矩阵改变主对角元次序后与原来的矩阵相似,要怎么证明

0EnEm0乘Am00Bn乘0EmEn0等于Bn00Am再问:那对于分成更多块的分块对角矩阵就是以上面这个过程为基础进行多次变换吗?再答:是的.完全类似

判断下列矩阵能否相似于对角阵,如能,请求出这个对角阵和变换矩阵P

A的特征值为2,2,4A-2E=011003002-->010001000所以属于2重特征值2的线性无关的特征向量只有1个所以A不能相似于对角矩阵

怎么判断以下矩阵能否与对角矩阵相似

A不能B的特征多项式是(1-λ)(λ^2-3λ+1)没有重根,故可对角化