4维泰勒公式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 12:34:36
也不叫没有,这是把x的三次方之后的我们统一称其为高阶,就如泰勒展开一样,他展开其实是无穷多项的,只是我们平时在计算的时候只取道对我们计算有关的几项,其他就用高阶o(x^n)表示,这里由于x趋于0所以x
你自己展开就行了!先求通项公式!再问:�Ҳ���ͨʽ再答:����e��x���ڰ�-xx��������ˣ�
泰勒公式的目的主要是用多项式来逼近复杂的函数,具有形式简单,计算方便的有点,主要是用来简化运算.但也有精度不高的缺点.我也刚学泰勒,我认为不需要把泰勒公式理解的多么透彻,知道怎么灵活的使用就行了.
泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和:f(x)=f(x.)+f'(x.)(x-x.)+f''(x
是三次方,皮亚诺余项表示后面全是比前面一个的高阶无穷小,做题中多用于求极限易于消元,那个R2n就是个笼统的概念并不代表就是o(x的2n次方),你理解错了.他仅仅代表高阶无穷小,跟那个系数无关
在数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式.如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的
就是用线性多项式来逼近非线性的函数.因为x的幂函数能逼近各种"曲度"的函数(也就是各阶导数),所以任何光滑的函数都能这么逼近.不过用的最多的还是一阶和二阶的逼近.
啊,我们刚好也才学完泰勒公式.数学一定要多做题才能熟练啊再问:来不及做了,明天哦不,今天就考试了再问:关键是好多好多好长的式子啊,咋办呐再答:死记硬背,然后刷五至十道题,就好。只要你想过,一定会抽出时
对于多项式f(x)=anx^n+……a2x^2+a1x+a0,可以看出f(0)=a0,f'(0)=a1,f''(0)=a2……f的n次导(0)=an从这里得到启发,即随意的一个f(x)(不一定是多项式
首先由f(x)在[a,b]上连续知|f(x)|也是连续的,因此|f(x)|在闭区间[a,b]上取得最大值max|f(x)|,由于f(a)=f(b)=0且f(x)不恒为常数(因为|f''(x)|≥1),
题目出错了吧.反例:f(x)=x^2∈C[-1,1]显然有lim[f(x)/x^2]=1x→0f''(x)=2>0,但是f(1/2)=1/4
泰勒公式:f(x)=f(x0)+f'(x0)/1!*(x-x0)+f''(x0)/2!*(x-x0)^2+…+f^(n)(x0)/n!(x-x0)^n+o((x-x0)^n)泰勒中值定理:若函数f(x
t^2=x^4-4x^3+4x^2,其中x^4-4x^3是x^2的高阶无穷小量,所以为o(x^2)也就是说,因为lim[(x^4-4x^3)/o(x^2)]=0,所以x^4-4x^3=o(x^2)
因为分母是x^2,所以只展开到2阶导数就够了,到三阶式子肯定含有x^3,由于x趋于0,所以x^3是x^2的高阶无穷小.也就是分母是几次方,一般就展到几阶.书后边写了几个常见的泰勒展开式,e^x的展开也
带佩亚诺余项的泰勒公式可以表示为:f(x)=f(x0)+(x-x0)*f'(x0)/1!+(x-x0)^2*f''(x0)/2!+…+(x-x0)^n*f^(n)(x0)/n!+o((x-x0)^n)
在高数泰勒公式里用的.本人自学.这里没有讲解问题补充:符号和大写M一样.只不过开口向右大写∑,小写σ,英文sigma(中文类似发音“西格玛”)∑
泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和:f(x)=f(x.)+f'(x.)(x-x.)+f''(x
比较难掌握再答:
那么长的推导过程,看书就行了.百度上谁打那么多字和运算符号.