多元线性回归的sig值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:18:24
要看每一个自变量的sig是否小于0.05,只要有一个不满足,则应选择STEPWISE方法,重新计算.
相同点:都是线性回归.不同点:前者是一元的,后者是多元的.
这下通了,都是小问题:x1=[100101.9108.2104.01102.6103.6];x2=[174162.6233.8257322.4373.1];y=[88.9283.791.13127.2
哥们自己看吧,我没耐心,你有时间就琢磨一下吧!
原假设是“X1的系数为0”,sig值低于0.05就可以拒绝原假设啦再问:也就是说,原假设是x1的系数为0,而不是我自己设置的那个假设吧?我都晕了一下午了。。。如果是我自己设置的假设,那就互相矛盾了再答
结果里,R值就是回归的决定系数,代表各变量能解释因变量的程度.ANOVA里,sig小于0.05证明回归方程有效.constant对应的B值是截距(常数项),其他变量对应B值就是变量的影响系数.变量对应
一个sig大于0.05,一个小于0.05,这是正常的,说明大于0.05的对因变量没有显著的影响而要比较回归系数的大小要看后面的标准化回归系数,因为前面带常数项的回归系数是带有单位的,所以无法判断回归系
造价是把?不建议造价,不是因为道德原因,而是造假太费功夫,很费时间,非专业人士不能做我经常帮别人做这类的数据分析的
因为在多元回归分析的过程中,会自动剔除一些对于因变量无显著影响的变量你只是用简单相关分析的不准确,有可能是变量之间存在一些共线性所以导致单个都相关,而在多元回归分析时会有些变量被剔除了,回归方程可以用
说明变量没有意义哦,你可以选几个变量纳入进去分析试试再问:先做“要因分析”,然后以分析出的“要因1,2,3,4”为变量进行回归分析。结果,“要因1”sig为零,“要因2,3,4”sig值却都严重偏大!
这样好.系数为零的原假设很难成立.
%首先输入下列系数:f = [13 9 10 11 12 8];A = [0.4 1.1
y=[320320160710320320320160710320];x1=[2.31.71.31.71.71.611.71.71.7];x2=[2.31.71.71.61.71.711.71.71.
对于你这个问题,很简单,你只需要将c=1-a-b带入到你的方程组中去,消去c,只有a,b的.那样就解决了约束条件.
用MINITAB来分析如果是用EXCEL的话,用"工具栏"里的"数据分析"中,选定"回归",再选定数据做分析就可以了.
y=[320320160710320320320160710320];x1=[2.31.71.31.71.71.611.71.71.7];x2=[2.31.71.71.61.71.711.71.71.
1.线性回归和非线性回归没有实质性的区别,都是寻找合适的参数去满足已有数据的规律.拟和出来的方程(模型)一般用来内差计算或小范围的外差.2.Y与X之间一般都有内部联系,如E=m*c^2.所以回归前可收
a=[320320160710320320320];f=[0.180.180.180.180.090.360.18];v=[2.31.71.71.71.71.71];F=[38.829.2326.53
http://hi.baidu.com/zhangkai1201/blog/item/c2bf22039bf73983d53f7c64.html