多元回归结果 只有一个系数显著
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 13:00:05
不显著就应该剔除,除非你想硬塞进这个自变量,那你只有改数据了
原假设是“X1的系数为0”,sig值低于0.05就可以拒绝原假设啦再问:也就是说,原假设是x1的系数为0,而不是我自己设置的那个假设吧?我都晕了一下午了。。。如果是我自己设置的假设,那就互相矛盾了再答
好像没法哦,只能根据标准自己来判断的只有相关分析时会在显著性水平后面加*
你看每个变量的sig值,如果小于0.05,就说明该变量对因变量有显著影响,反之则没显著影响,beta那一列是回归系数,B那一列是标准回归系数.
B为方程的b,如0.068701即为x1前的样本回归系数b1,-2.856476为b0.该方程可写成y=-2.856476+0.068701x1+0.183756x2SEB为各b的标准误.beta为b
如果你做的是多元回归看beta那列数据绝对值越大影响越大正负号是影响的方向
分析差异显著性既然能回归了说明和哪些因素是显著性差异的看beta那列数据绝对值越大影响越大正负号是影响的方向也就是正相关还是负相关
哪个自变量比较重要吗?看标化系数再问:是标准系数?那回归方程的话最后是用非标准化系数的B还是标准系数呢?谢谢~~~~(>_
常量系数为负是什么意思怎么分析,而且如果在显著性水平sig大于0.5这合理不?第一,常量估计值并不是负的,而是6.353.第二,其它的解释变量中,有三个系数是负值,这说明,这些自变量与因变量是反向即负
简单线性:等式两边都不取对数对数:等式两边都取对数半对数:等式一边取对数显著性检验:单个系数t检验,联合显著性F检验
这句话分两种情况考虑,第一,在一元线性回归的情况下,由于只有一个系数需要检验,所以回归方程的F检验与系数的T检验的结果是一直的.第二,在多元线性回归的情况下,方程总体的线性关系检验不一定与回归系数检验
matlab里面有提供回归模型的全套解决方案,就是线性拟合的工具箱,cftool,在命令窗口输入cftool命令,可以调出工具箱,你可以自己摸索下,都是简单的英语,相信你摸索一会儿就会了.再问:我需要
你有没有统计软件,SPSS,eviews都可以很容易得到的用excel也行,点击工具-数据分析(没有的话,先选中加载宏-选中分析工具库,之后就会出现数据分析)-在里面找到“回归”,然后就可以出来啦.
首先来说明各个符号,B也就是beta,代表回归系数,标准化的回归系数代表自变量也就是预测变量和因变量的相关,为什么要标准化,因为标准化的时候各个自变量以及因变量的单位才能统一,使结果更精确,减少因为单
为了研究实际问题,我们往往要寻找共处于一个统一体中的诸多因素之间的相互联系、相互制约的客观规律.我们把共处于一个统一体中的诸多因素称为变量,把它们之间相互联系和相互制约的客观规律称为系统中变量之间的关
自己在报告里面手工加进去好了spss结果除了相关分析会自动加上去*之外其他的都不会加上去的
看系数后面最后一项p值,代表了显著性水平,一般小于0.05便可以接受.不过要注意整体模型是否满足古典假设,进行检验,看有无多重共线性,自相关,异方差.检验修正完成后才能彻底地判断是否接受.
我晕,白写了啊,刚才不小心改掉了.首先说觉得你这个方程回归的不好,R系数太小,显著性不好.F值应该大于该自由度下查表的值才行,所有的t值大于查表得到的值,这样从方程到参量全部显著.不过受制于原始数据,
一,首先算出不同分布所对应的待定值a二,然后根据分布值表查出在不同的显著性水平下的值a1二,比较二者的大小就可判断:如果前者大则拒绝反之接受.具体的例子可以看一下大学的数理统计,不同的分布有不同的结果
不能拒绝二次adm项系数为0的假设所以不显著你可以看看二次回归和一次回归R方的差异如果不大说明一次v即可.再问:但是R^2很大啊。。。再答:一次和二次的R方差异是多少?再问:相差不大。。。