多元回归的结果的F.N.R值,表明什么
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 08:20:54
你得出这个模型的方法是进入法,R系数为.746,R方.556表示解释因变量R的比例为55.6%,模型虽然显著.但是回归系数没一个显著,标准回归系数没一个显著,因为回归系数的t检验,sig值都大于.05
sig的值小于0.05,说明有显著的影响,也就是自变量与因变量间存在显著的线性关系而常数项无论sig值,无论大小i是否显著,在你写回归方程时,都需要写进去的
用excelf分布函数
你看每个变量的sig值,如果小于0.05,就说明该变量对因变量有显著影响,反之则没显著影响,beta那一列是回归系数,B那一列是标准回归系数.
你的回归方法是直接进入法拟合优度R方等于0.678,表示自变量可以解释因变量的67.8%变化,说明拟合优度还可以.方差检验表中F值对应的概率P值为0.000,小于显著度0.05,因此应拒绝原假设,说明
B为方程的b,如0.068701即为x1前的样本回归系数b1,-2.856476为b0.该方程可写成y=-2.856476+0.068701x1+0.183756x2SEB为各b的标准误.beta为b
F检验说明你的众多自变量和你的因变形是有显著性影响的,可以做回归分析.但是并不是说每一个自变量都和因变量有显著性影响,所以要对每一个自变量T检验,T检验不合格说明该自变量对因变量没有显著性影响,一般做
如果你做的是多元回归看beta那列数据绝对值越大影响越大正负号是影响的方向
第一个图显示你是用进入法做的回归分析,全部因变量都进入方程.第二个图只需要看你的r的平方,你的图中显示r方才0.146,对变异的解释只有14.6%,太低了.第三个图是方差分析,sig显著性为0.034
这两个检验你不用管自由度.记住公式就可以.考试的时候套用就行...
当然有意义.F值对应的SIG>0.05,则表示回归方程是无效的.
分析差异显著性既然能回归了说明和哪些因素是显著性差异的看beta那列数据绝对值越大影响越大正负号是影响的方向也就是正相关还是负相关
变量进入回归方程需要两个两个条件:能够提高方程的解释量、能够使方程最为简化.因此,如果一个变量加入后解释量仅仅由90提高到91,那么多数情况下这个变量不会被纳入.是否被纳入方程,就要看后面的检验值t值
%首先输入下列系数:f = [13 9 10 11 12 8];A = [0.4 1.1
对于你这个问题,很简单,你只需要将c=1-a-b带入到你的方程组中去,消去c,只有a,b的.那样就解决了约束条件.
1.线性回归和非线性回归没有实质性的区别,都是寻找合适的参数去满足已有数据的规律.拟和出来的方程(模型)一般用来内差计算或小范围的外差.2.Y与X之间一般都有内部联系,如E=m*c^2.所以回归前可收
多元回归问题:对于一组变量(x1,...,xp;Y)作了n次观测,得到:(xi1,...,xip;yi),i=1...n;Yi=β0+β1xi1+...+βpxip+εi,i=1...n;构成p元回归
SPSS软件、eviews软件都能实现.可以简单地这样理一般回归得到结果是“估计自变量变化时,因变量的变化”,逻辑斯蒂回归结果是“估计因变量发生的概率随自变量的变化”
表一的r值是复相关系数,r方是决定系数,r方表示你的模型可以解释百分之多少的你的因变量,比如你的例子里就是可以解释你的因变量的百分之八十.很高了.表二的sig是指你的回归可不可信,你的sig是0.00
相当于没有找到预测变量,看你是分析影响因素还是预测,影响因素的话r2没必要特别高的,预测要求大于0.7