多元回归异方差
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 18:01:56
1.线性回归和非线性回归没有实质性的区别,都是寻找合适的参数去满足已有数据的规律.拟和出来的方程(模型)一般用来内差计算或小范围的外差.2.Y与X之间一般都有内部联系,如E=m*c^2.所以回归前可收
这下通了,都是小问题:x1=[100101.9108.2104.01102.6103.6];x2=[174162.6233.8257322.4373.1];y=[88.9283.791.13127.2
MultipRegression(多元回归分析)概念:分析若干个预测变项和一个效标变项间的关系
哥们自己看吧,我没耐心,你有时间就琢磨一下吧!
多元回归是对“多个”有相互关联作用的变量(比如期货交易中的大豆、小麦、玉米和豆油价格)进行回归分析的方法.“回归”的意思是根据已有的数据倒推回去,找出这些数据相互关联的公式,根据这个公式我们可以计算或
加权最小二乘法.在回归窗口,点估计,选项,会发现加权最小二乘法的框框,加入适当权数即可.希望对你有帮助再问:取什么作为权数?再答:一般有两种,一是取某个自变量的倒数,二是取残绝对值的倒数。请及时点采纳
white检验确定确实存在异方差后,使用加权最小二乘法解决.权重,可以是自变量某一个,也可以是额外指定权重变量,也可是自变量的函数.再问:即是说,如果我有2个解释变量,就只对其中的一个(X1)加权就行
x1=[7.53237.92628.28338.54208.7702]';x2=[117.2117.4117.7118.3118.6]';x3=[2.9503.3005.2706.5257.470]'
这个问题之前也困扰着我,查了相关的数据,下面是我自己整理的一些,供你参考.从怀特检验看OBS的p值很小,说明存在异方差,修正的方法有好几种,我介绍两种吧,第一种是在回归前先将变量进行对数处理,能够很好
因为在多元回归分析的过程中,会自动剔除一些对于因变量无显著影响的变量你只是用简单相关分析的不准确,有可能是变量之间存在一些共线性所以导致单个都相关,而在多元回归分析时会有些变量被剔除了,回归方程可以用
excellinest函数计算结果:t=a1x1^2+a2x1+a3x2^2+a4x2+……+a8x4+a9下面9个数分别为a8,a7,a6,a5……a2,a1,a9-0.000871944-0.0
模型摘要模型RR方调整的R方估计的标准差1.838a.703.5057.00366a.预测变量:(常量),综合指标Z,附加济掺量,水灰比,砂率.ANOVA(b)模型平方和df均方F显著性1回归695.
y=[320320160710320320320160710320];x1=[2.31.71.31.71.71.611.71.71.7];x2=[2.31.71.71.61.71.711.71.71.
可以的.把P取对数后作为新的因变量,就成为线性的了.可以直接估计.
用MINITAB来分析如果是用EXCEL的话,用"工具栏"里的"数据分析"中,选定"回归",再选定数据做分析就可以了.
y=[320320160710320320320160710320];x1=[2.31.71.31.71.71.611.71.71.7];x2=[2.31.71.71.61.71.711.71.71.
1.线性回归和非线性回归没有实质性的区别,都是寻找合适的参数去满足已有数据的规律.拟和出来的方程(模型)一般用来内差计算或小范围的外差.2.Y与X之间一般都有内部联系,如E=m*c^2.所以回归前可收
既然你是问的消除,意思就是说你已经发现以方差的问题了,下面谈怎么处理这个问题:先按照原始的回归方法去做,然后得到残差向量(ei),其中ei=Yi-(Yi的估计值),然后将回归得到权重矩阵D=diag(
没必要消除.可以用generalizedmethodofmoments(GMM)或者更简单的generalizedleastsquares(GLS)直接计算异方差.Eviews里应该有built-in
时间序列的话应该先检验数据是不是平稳的在做回归,不平稳的话就没有意义了,可以尝试先做差分在看看是否平稳在做回归