复数|z|是什么意思
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 08:05:30
设z=x+iy,由条件知道:√(x^2+y^2)+x-iy=1-2i故:√(x^2+y^2)+x=1-y=-2解得:x=-3/2,y=2即z=-3/2+2i
令z=x+yi,x和y都是实数3z+|z|=3x+3yi+√(x²+y²)=17-9i所以实部和虚部分别相等得,3y=-9,3x+√(x²+y²)=17解得y=
你的题目错了吧,是(z-3)(2-i)=5∴z-3=5/(2-i)=5(2+i)/[(2-i)(2+i)]=5(2+i)/5=2+i∴z=5+i∴z的共轭复数是5-i(互为共轭复数的两个复数实部相等,
Z+|Z的共轭复数|=2+i可知Z的虚部为i,那么设Z=a+i,那么|Z的共轭复数|=根号下(a^2+1)所以a+√(a^2+1)=2解上面的方程可得a=3/2那么Z=3/2+i
z=1/4设z=a+bi代入|z|+zˊ=i-2z将等号两边实部与虚部整理得√(a^2-b^2)+a=1-2a-b=-2b解得a=1/4,b=0故z=1/4
z=3-ai,|z|=√[3^2+(-a)^2]
假设复数Z=a+bi,则由已知,得:(a-2)的平方+b的平方=4.①Z+4/Z=a+bi+〔4/(a+bi)〕=a+bi+〔4(a-bi)/(a+bi)(a-bi)〕=a+〔4a/(a的平方+b的平
设z=a+bi则(3+2i)(a+bi)=3(a+bi)+3+2i即(3a-2b)+(2a+3b)i=(3a+3)+(3b+2)i所以3a-2b=3a+3,2a+3b=3b+2故a=1,b=-3/2所
设Z=a+bi(a,b∈R),由Z+Z4为实数,且|Z-2|=2,得54b=0(a−2)2+b2=2,解得:a=4b=0或a=0b=0.∴Z=4或0.故答案为:4或0.
设z=a+bi(a,b∈R),|z|=a2+b2,代入方程得a+bi+a2+b2=2+8i,∴a+a2+b2=2b=8,解得a=−15b=8,∴z=-15+8i..z=-15-8i.
设z=a+bi,有条件得a+bi+√(a^2+b^2)=2+i对比实部与虚部系数得b=1再解方程得a=3/4
(本题满分12分)设z=x+yi(x,y∈R),…(1分)∵|z|=10,∴x2+y2=10,…(3分)而(1+2i)z=(1+2i)(x+yi)=(x-2y)+(2x+y)i,…(6分)又∵(1+2
因为|z|=|z_|,所以设|z|=x(为实数),则z=(2x-12)-6i,则|z|^2=x^2=(2x-12)^2+(-6)^2,所以x^2=4x^2-48x+144+36,化简得x^2-16x+
1,设z=x+yi,则复数z对应的点为(x,y),z的共轭复数=x-yi,2(z+z的共轭复数)=z*z的共轭复数+3即为2(x+yi+x-yi)=(x+yi)(x-yi)+3即4x=x^2+y^2+
我教你这种求复数z你可以选择设z=a+bi|z|=√(a^2+b^2)————(你要理解这是实数!与虚部无关)共轭复数z'=a-bi所以|z|-z'=√(a^2+b^2)-a+bi=1-2i对应的实部
sinz=[e^(iz)-e^(-iz)]/(2i)=2e^(iz)-e^(-iz)=4i令z=x+iy,代入:e^x(cosy+isiny)-e^(-x)(cosy-isiny)=4i对比实部及虚部
设z=a+biz(共轭复数)=a-biz+z(共轭复数)=2a=2→a=1z·z(共轭复数)=a^2+b^2=1+b^2=2→b=±1|z-z(共轭复数)|=|-2b|=2
复数(虚数)是和实数并列关系的一个数集.一般表示为z=a+bi,其中a,b为实数,i²=-1(不要问为什么).复数的模|z|=根号下a²+b²,其实就是在坐标系里原点到(
解题思路:此题考察复数的运算,求出z再求模即可解题过程:
设z=a+bi(a,b∈R),则复数3z-.z=3(a+bi)-(a-bi)=2a+4bi,∵复数3z-.z对应的点落在射线y=-x(x≤0)上,∴4b=−2aa≤0,由|z+1|=2,(a+1)2+