复数i i 1 等于
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:53:02
-1
i+1
要了解i是什么东西对于你现在只要了解i=√-1即可于是得到i=ii*i=-1i*i*i=-1*i=-ii*i*i*i=-1*(-1)=1因此i^3=i*i*i=-i1/i=i*i*i*i/i=i^3=
-1
∵1+1i=1-i,∴(1+1i)2=(1-i)2=-2i,故选A.
这种理解是不正确的,并且这叫虚数i虚数是无法做比较的,它不等于几,跟向量一样是一种研究数学的工具有定义i^2=-1还从来没见过i=根号(-1)的说法
-i+1/i=(-i+1)i/i²=(1+i)/(-1)=-1-i
i^-3=1/i^3=1/(i^2*i)=1/(-1*i)=i
i-1/i的话=i+(-1/i)=i+i=2i(i-1)/i的话=1-1/i=1+i有什么不懂的可以追问、再问:同乘-i不可以吗??再答:上下同时乘以i也可以啊,乘-i更方便,分母=1分子=-i(i-
互相帮助,祝共同进步!
去括号i(i-1)=i^2-i=-1-i
(1+i)^2=1+i^2+2i=1-1+2i=2i主要是i的平方=-1知道这个就很容易了
=2(1+i)/(1-i)(1+i)=2(1+i)/2=1+i
(2+i)^2==2^2+4i+i^2=4+4i-1=3+4i
“虚数”这个名词是17世纪著名数学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字.后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实.虚数轴和实数轴构成的平面称复平面,复平面上每一点
(1-i)/i分子分母同时乘以i得到:[(1-i)*i]/(i*i)=(i+1)/(-1)=-i-1,-i-1的平方为:(-i-1)^2=-1+2i+1=2i
2/1-i=2(1+i)/(1-i)(1+i)=(2+2i)/1-i^2=(2+2i)/1-(-1)=1+i