复变函数中 圆心在1-i,半径为2的圆的参数方程为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 13:21:17
复变函数中 圆心在1-i,半径为2的圆的参数方程为
平面直角坐标系中,○M的圆心坐标为(0,2),半径为1,第一象限的点N在直线y=x上,如果一点N为圆心,半径为4的○N与

由题意得MN=6即X方+(Y-2)方=36,将Y=X(X大于0,Y大于0)代入X方+X方-4X+4=36X方-2X=16(X-1)方=17X=根号17+1,另一根不合题意N(根号17+1,根号17+1

如图,在平面直角坐标系中,O为坐标原点,圆c的圆心坐标为(2,-2),半径为根号2,函数y=-x+2的图像与x轴交于点A

1,第一问很简单我就不说了,斜率之积是-1,CO⊥AB2,分两种讨论y=-x+2,令y=0,得A(2,0)令x=0,得B(0,2)点O到AB的距离为√2,所以OP∈[√2,2]当P在点B时,此时三角形

如图,在平面直角坐标系中,O为坐标原点,圆c的圆心坐标为(-2,-2),半径为根号2,函数y=-x+2的图像与x轴交于点

1,oc斜率是1,AB斜率是-1,所以垂直2,设p为(x,y),第一种情况:线段长度OP=OA,此时P和B重合第二种情况:线段长度OP=PA,此时P(1,1)第三种情况:线段长度AP=OA3,肯定有两

在java中设计一个程序,判断直角坐标系中一个点是否在以(0,0)为圆心以1为半径的圆内?

publicclassCoordinate{publicstaticvoidmain(String[]args){doublex=0.5;//测试点横坐标doubley=0.3;//测试点纵坐标fin

复变函数中 arg(1-i)是多少

arg(1-i)=arctan(-1/1)=7π/4再问:这类问题是怎么求呢?求解答。。。谢谢了再答:x=a+biifa,b>0(第一象限)ifa0(第二象限)ifa

复变函数题 1/(1+z∧2)在z=0泰勒级数为 ( )收敛半径为( )

1/(1+z²)=1/(1-(-z²))=∑(-z²)^n=∑(-1)^n·z^(2n)n从0到∞求和这里|-z²|再问:谢谢啦,我还有两道题帮忙做一下呗

在平面直角坐标系中,O为坐标原点,圆C的圆心坐标为(-2,-2)半径为根号2,函数Y=-X+2

(1)需证明直线AB和OC的斜率相乘为-1.直线AB斜率为-1,直线oc:y=x,斜率为1,所以相乘为-1,所以两直线垂直.(2)P在AB上,设P(X,-X+2),A(2,0)PA=根号[(X-2)^

(2011•宜兴市模拟)在直角坐标系中,⊙O的圆心在原点,半径为3,⊙A的圆心A的坐标为(-3,1),半径为1,那么⊙O

根据题意得点A到点O的距离是3+1=2,即两圆的圆心距是2,所以半径与圆心距的关系是3-1=2,根据圆心距与半径之间的数量关系可知⊙O1与⊙O2的位置关系是内切.故选B.

如图,在平面直角坐标系中,O为坐标原点,P是反比例函数y=6x(x>0)图象上的任意一点,以P为圆心,PO为半径的圆与x

(1)点P在线段AB上,理由如下:∵点O在⊙P上,且∠AOB=90°∴AB是⊙P的直径∴点P在线段AB上.(2)过点P作PP1⊥x轴,PP2⊥y轴,由题意可知PP1、PP2,是△AOB的中位线,故S△

(i)求的值 20.平面直角坐标系中,已知椭圆:的离心率为,左、右焦点分别是.以为圆心以3为半径的圆与以为圆心1为半径的

解题思路:考查了椭圆的方程和性质,最小与椭圆的位置关系,三角形的面积。解题过程:

如图,在直角坐标系中,以P(2,1)为圆心,R为半径画圆

郭敦顒回答:①圆的方程是(x-2)²+(y-1)²=R²,把C(0,b)与点A(m,0)代入圆的方程得,(0-2)²+(b-1)²=R²,b

如图,在平行四边形ABCD中,以A为圆心,以AB为半径做圆交

解题思路:要证明EF=FG,则要证明∠GAF=∠EAF,由题干条件能够证明之.解题过程:

在平面直角坐标系中 已知a (3,0 ),B(0,4),O为坐标原点,以点P为圆心的圆P半径为1

上图黄色区域即为所求,面积为 47-6π/12解题思路:先如图取一个满足条件的圆,然后再找临界状况.第一种临界:与三边相切,即三角形内三条蓝色的直线第二种临界:圆只与三角形的一个角相交,有两

在平面直角坐标系中,以原点为圆心,单位长度为半径的

由于:sinα^2+cosα^2=1;sinβ^2+cosβ^2=1;可以知道

平面直角坐标系中,⊙M的圆心坐标为(0,2),半径为1,点N在x轴的正半轴上,如果以点N为圆心,半径为4的⊙N与⊙M相切

①⊙M与⊙N外切,MN=4+1=5,ON=MN2−OM2=21,圆心N的坐标为(21,0);②⊙M与⊙N内切,MN=4-1=3,ON=MN2−OM2=5,圆心N的坐标为(5,0);故答案为:(21,0