垄断企业的成本C=500 7Q,它面临的需求为P=130-3Q
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:24:54
垄断价格P下的利润为f(P)=PQ-TC=P(360-20P)-6(360-20P)-0.05(360-20P)^2=-40(P^2-30P+216)令f'(P)=0,得2P-30=0,于是利益最大的
当P=55时,利润Y=收入-成本,即利润Y=P*Q-TC由于TC=0.5Q^2+10Q,P=55,所以利润Y=P*Q-O.5Q^2-10Q=-0.5Q^2+45Q对利润函数求导,可得Y'=-Q+45由
收入R=QP=-4Q^2+9400Q利润L=R-TC=-4Q^2+6400Q-4000dL/dQ=-8Q+6400令dL/dQ=0得Q=800(1)该厂商的均衡时的产量Q=800(2)该厂商的均衡时的
两者都有可能,向右上方倾斜的是diminishingreturntoscale,水平的是constantreturntoscale,
好的反需求函数为P=8-0.4Q.求该厂商实现利润最大化时的产量、法1;maxπ=P*Q-C(收益减成本)maxπ=(8-0.4Q)*Q-(0.6Q^2+3Q+5)=8Q-0.4Q^2-0.6Q^2-
TVC=Q^3-8Q^2+10QAC=TC/Q=Q^2-8Q+10+50/QAVC=TVC/Q=Q^2-8Q+10AFC=FC/Q=50/QMC=dTC/dQ=3Q^2-16Q+10
首先,求出利润函数利润=收入-成本,收入=价格*数量,故利润W=P*Q-C=(800-4Q)*Q-(1000+200Q+5Q^2)是一个关于Q的一元二次函数,可以求最值按照微观经济学的解法,利润最大化
设Q1,Q2,Q=Q1+Q2,利润=PO-TC1-TC2,(为关于Q1,Q2的二元函数),利润分别对Q1,Q2求偏导数等于0,组成二元一次方程组,解出Q1,Q2,即为两个厂商的产量,进而算出价格.
边际成本MC=成本(TC)’Q=2,(条件MR=MC)总收益TR=P*Q=(50-3Q)*QMR=(TR)’Q=50-6Q=2得Q=8(产量)价格P=50-3Q=50-3*8=26利润π=P*q-TC
总变动成本TAC=AVC*Q=20Q-0.07Q^2+0.0001Q^3边际成本即对TAC求导MC=20-0.14Q+0.0003Q^2P=56-0.01QMR=56-0.02QMR=MC56-0.0
你确定题目没有写错?我很仔细的算了,得出的Q是负数:总成本TC=3000+400Q+10Q^2,对TC求导,得边际成本MC=400+20Q;平均收益AR=P=100-5Q,则总收益TR=AR*Q=10
这是基础的微观经济题目.最大化的产量和价格应该是在MC=MR处得到,先把需求函数变为价格函数P=200-QMR=QP=200Q-Q的平方即MR=200-2QC=10Q的平方+400Q+3000故MC=
应该是错了.你搜一下《西方经济学(微观部分第五版)》第三章效用论的课后题第九题它的第二小问q=1/36p^2转换成反需求函数就是p=1/6q^-0.5直接换位置就行了我也见了几个这样的题,太扯了.
若政府试图对垄断企业采取规定,使其达到完全竞争的产量水平,及边际成本定价法因此P=MC6+0.1Q=18-0.05QQ=80P=14TC=480+0.05*6400=600利润=TR-TC=1120-
收入R=QP=-4Q^2+9400Q利润L=R-TC=-4Q^2+6400Q-4000dL/dQ=-8Q+6400令dL/dQ=0得Q=800(1)该厂商的均衡时的产量Q=800(2)该厂商的均衡时的
联立两个方程,把需求函数带入总成本函数里.得一个二元一次方程,再求导.
MC=2Q+8Q=Q1+Q2=12-0.2P+12.5-0.1P=24.5-0.3PP=245/3-10/3*QMR=245/3-20/3*QMR=MC245/3-20/3*Q=2Q+8Q=8.5P=
垄断经济··垄断市场··垄断技术····
垄断厂商的利润最大化,π=p(q)*q-c(q)p=8-2/5q代入上式π=(8-2/5q)*q-0.6q^2-3q-2就一阶导数为0得出q然后根据这个数字,你就可以求得其他的因素,价格收益最大化TR
(1)因为总收益TR=P*Q=AR*Q=>P=AR=1200-4Q需求函数为P=1200-4Q(2)TR=PQ=(1200-4Q)Q=1200Q-4Q²(3)TC=AC*Q将AC带入即可