4个球放入4个盒子,有个盒子没有球
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 02:09:04
“再从余下的3个盒子中拿1个3C1,放1个球2C1,最后从余下的2个盒子中拿1个2C1,放1个球1C1,”这部分有重复计算.如余下的3个盒子是甲、乙、丙,余下的两个球是A、B.“再从余下的3个盒子中拿
第一种情况,拿的两个白球,则最后拿到白球的概率是:4/9*3/8*7/11=7/66第二种情况,拿的两个球不同,则最后拿到白球的概率是:(5/9*4/8+4/9*5/8)*6/11=10/33第三种情
4×3×2×1=24(种);答:共有24种放法.
直接求可以求出来,分布列如下:X1234P10/206/203/201/20期望EX=1*(10/20)+2*(6/20)+3*(3/20)+4*(1/20)再问:答案不是这样,答案是25/16。再答
第一个盒子中取到两个白球的概率4/(54)×(4-1)/(9-1)=1/6,然后从第二个盒子中取到一个白球的概率1/6×[(52)/(452)]=7/66;从第一个盒子中取到1个红球1个白球的概率为5
你这题不完整啊再问:补充好了,帮帮忙~~~~再答:第一个盒子中任取2个球取出1红,1白[c(1,5)c(1,4)/c(2,9)*c(1,6)]/c(1,10)=1/3取出2红[c(2,5)/c(2,9
平均每个盒子里装两个.然后依次把剩下两个球按规律装就可以了.结果是10种.
从第一个盒子里任取2个球放入第二个盒子里,一共有三种情况:1,A1=取2个红球,P(A1)=C5(2)/C9(2)=5/182,A2=取1红1白,P(A2)=C5(1)C4(1)/C9(2)=5/93
P=P(第一个盒子取出红球)*P(第二个盒子取出白球)+P(第一个盒子取出白球)*P(第二个盒子取出白球)=5/9×1/2+4/9×2/5=41/90
每个盒子有三种选择,所以是3^4=81种再问:盒子是一样的没有顺序不对再答:一种球,3两种球:3x3=9三种球:3共15种没注意,不好意思再问:谢谢感觉没问题可不可以用组合数从而扩展它到更大的数直接算
第一种情况从第一个盒子里选了两个白球C42(4在下2在上)/C92*C71/C111=21/198第二种情况从第一个盒子里选了一个白球C51*C41/C92*C61/C111=60/198第二种情况从
问题不详,是摸一个还是两个盒子
本题解法不唯一,现提供一种方法:第一步,“扔掉”一个盒子,有4种方法;第二步,在3个盒子中的一个盒子里放2个球,其余两个盒子里分别各放1个球,有3种方法.所以共有4*3=12种不同的放法.如果盒子不同
有3种情况,一:3个盒子各1球,二:有一个盒子2个球,三:有一个盒子3个球三种情况的总数分别为P(4,3)=24,P(4,2)XC(3,2)=,C(4,1)=4,因此3个盒子各1球的概率为24/(24
把24个玻璃球放入若干的盒子中,要是总有一个盒子中放入4个玻璃球,最多需要(7)个盒子
57-32=25个9-4=5个25÷5=5次.
C(X,Y)是x取Y的组合,P(X,Y)是X取Y的排列.A盒放两个球:P(4,4)A盒只放一个球:将其余4个球中两个球捆绑,当成一个球看,有C(4,2)种;放进3个盒,有P(3,3)种.所以,共有P(
先选盒子,4C2=6种组合,再放球6*(4C1+4C2)*2=120看看答案对不?又想了一遍,先选两个盒子4C2再分类三种情况:1、第一个盒子一个,第二个盒子三个:4C1.2、每个盒子两个:4C2.3
先从第一个盒子中拿出两个球放入第二个盒子中有三种情况:1、全是红的,5/9x4/8=5/18此时从第二个盒子中任取一个球,取到白球的概率:5/18x5/(9+2)=25/1982、全是白的,4/9x3
4^4=256每个球都有4个盒子可以选择那么4个球的放法就是4^4再比如如果是相同的球那就要考虑每个不同的盒子中球的个数了因为每个球是相同的是盒子不同还是放入的要不同?对啊就像LZ补充说的答案是4^4