在锐角三角形abc中, ad为BC边上的高,dc=ab bd,求证
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 10:05:50
【AB∶AC=BD∶CD】证明:作CE//AB,交AD延长线于E∴∠BAD=∠E,∠B=∠ECD∴△ABD∽△ECD(AA)∴AB∶EC=BD∶CD∵AD平分∠BAC∴∠BAD=∠CAD∴∠E=∠CA
根据题意a2c,即20>2c∴c20/3那么c的取值是789当c=7时,a+b=13,即a和b的平均值为6.5,当a和b均为整数时,且ab不成立,所以舍弃当c=8时,a+b=12,同上的分析,由于a
sinB/sinA+sinA/sinB=6cosCsin(A+C)/sinA+sin(B+C)/sinB=6cosC(sinAcosC+cosAsinC)/sinA+(sinBcosC+cosBsin
(1)由正弦定理:(2sinA-sinC)cosB=sinBcosC2sinAcosB-sinCcosB=sinBcosCsinBcosC+sinCcosB=2sinAcosBsin(B+C)=2si
在锐角三角形ABC中,a,b,c分别为角A,B,C所对的边,且b=1/2asinC.(1)若tanA=3,求tanB;(2)求tanB的最大值解析:由正弦定理,2sinB=sinAsinC=sinAs
因为a>b>c所以sina>sinb>sinc由二倍角sina>sinb>sinc,sina^2>sinb^2>sinc^21-cos2a>1-cos2b因为角为钝角,所以平方后要变号cos2a^2>
(15)2tanB=3tanC2tanB=3tan(135-B)tanB=3或tanB=-1/2(舍去)AD=BDtanB=6S=1/2*5*6=15
因为AC=A'C'AD=A'D,AD,A'D'分别是锐角三角形ABC和锐角三角形A'B'C'中BC,B'C'边上的高∠ADC=∠A'D'C'=90°所以BD=B'D' 同理DC=D'C′所以BC=B
1.因为abc成等比数列,所以,b^2=ac,所以,(sinB)^2=sinAsinC,又因为,2sinAsinC=1,所以,sinAsinC=1/2,所以,(sinB)^2=1/2,又因为三角形是锐
设角CAD=α,角BAD=β,则α+β=45度,设AD=h,则:tanα=3/h,tanβ=2/h,而tan(α+β)=1=(tanα+tanβ)/(1-tanα*tanβ)=(3/h+2/h)(1-
是求,求证,∠EAF+∠EDF=180°?∵AD为直径.∴∠AED=∠AFD=90°.(直径所对的圆周角为直角)∴∠AED+∠AFD=180°,∠EAF+∠EDF=360°-(∠AED+∠AFD)=1
在锐角三角形ABC中,向量AB=a,向量CA=b,三角形ABC面积为1,且|a|=2,|b|=根号2,S=1/2*|AB|*|AC|*sinA=1sinA=√2/2锐角三角形A=45°a*b=|a|*
连接BD∵AB的垂直平分线交AC于D,∴AD=BD,则BC=BD等腰三角形ABD中,∠A=∠ABD.∠A+∠ABD=∠BDC=∠C=∠ABC△ABC中∠A=180÷(1+2*2)=36°∠ABC=36
1.证明:因为AD、BE分别是BC、AC边上的高,所以角ADC=角BEC=90度,又因为角C=角C,所以三角形CDE相似于三角形CAB.2.因为三角形CDE相似于三角形CAB,所以DE/AB=CD/A
√3tanA-tanB=1+tanAtanB√3tan(A-B)=1tan(A-B)=√3/3A-B=30A=30+BA再问:sin(A+B)=sinC0
因为sinA=2(根号2)/3,所以cosA=(根号3)/3,sin(B+C)=sin(t-A)=sinA=2(根号2)/3,cos(B+C)=-(根号3)/3,tan(B+C)=-2(根号6)/3,
题目本身结论不成立.如三边的长度为3,4,5,满足4的平方+5的平方大于3的平方,但它是直角三角形.可加条件“c为最长边”使结论成立.用余弦定理可证.
∵AD是直径,∴∠AED=∠AFD=90°,根据四边形AEDF内角和为360°,得∠EAF+∠EDF=180°.⑵β=1/2α.证明:∵BD=PD,AD⊥BP,∴AB=AP,∴∠DAB=∠DAP,∵∠
∵b+c>a,即20-a>a∴a<10又∵a,b,c均为整数且a>b>c,a+b+c=20.∴有四种情况,即①a=9,b=8,c=3②a=9,b=7,c=4,③a=9,b=6,c=5④a=8,b=7,