在锐角△ABC中,AB=AC=10,tanB=3 4,则底边BC的长为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:40:33
解题思路:此题根据△ABC中∠A为锐角与钝角分为两种情况,当∠A为锐角时,∠B等于70°,当∠A为钝角时,∠B等于20°解题过程:
S△ABC=1/2*AB*AC*SINA=1/2*4*1*SINA=√3SINA=√3/2,因为是锐角三角形,所以A=60°(不能是120°)则COSA=1/2所以向量AB*向量AC=AB*AC*CO
解题思路:本题运用直角三角形的性质和等腰三角形的性质解决。解题过程:解答见附件最终答案:略
cos∠A=(AB²+AC²-BC²)/2AC·AB=(9+25-36)/2×3×5=-1/15<0所以∠A∈[90º,180º]所以△ABC是钝角三
因为AB=AC所以顶点角是A,当角A小于90度时,AB的垂直平分线与AC交E点交AB于F点三角形AFE是直角三角形,角A=90-40=50度,角B=(180-50)/2=65度当角A大于90度时,角A
如图,∠B=70°或20°.
∵△ABC中,AB=4,AC=5,∴△ABC的面积为S=12AB•ACsinA=6,即12×4×5sinA=6,解得sinA=35,结合A为锐角,可得cosA=1−sin2A=45因此,AB•AC=|
证明:因为AB=AC,所以三角形ABC是等腰三角形;由
设AB的垂直平分线交AB于F,A于CE.角AEF=50因为AB垂直于EF所以角AFE=90因为三角形内角和=180所以角A=40因为AB=AC所以角B=角C=(180-角A)/2=70答案=70
解三角形常用到余弦定理和正弦定理,可以利用已知的边和角求出未知的边和角,其中余弦定理可以表示成BC^2=AB^2+AC^2-2AB*AC*cosA,正弦定理表示成a/sinA=b/sinB=c/sin
设△ABC,AB=AC=10,BC=2a,高AD=b,∵S=2ab÷2=30,∴ab=30由a²+b²=100,∴a²+2ab+b²=100+30×2(a+b)
根据△ABC中∠A为锐角与钝角,分为两种情况:①当∠A为锐角时,∵AB的垂直平分线与AC所在的直线相交所得到锐角为50°,∴∠A=40°,∴∠B=180°−∠A2=180°−40°2=70°;②当∠A
同学:你的结论似乎有误能够证明的是下面的结论:BC^2=AB2^+AC^2-2AB·AD证明要点:注意在两个直角三角形中运用勾股定理可得:BC^2=BD^2+CD^2=(AB-AD)^2+AC^2-A
当∠A为锐角时,∵AB的垂直平分线与AC所在的直线相交所得到锐角为50°,∴∠A=40°,∴∠B=180°-∠A2=180°-40°2=70°;当∠A为钝角时,∵AB的垂直平分线与AC所在的直线相交所
因为AB=AC所以顶点角是A,当角A小于90度时,AB的垂直平分线与AC交E点交AB于F点三角形AFE是直角三角形,角A=90-50=40度当角A大于90度时,角A=180-(90-50)=140度
设AB=AC=a,由sinA=12/13,且三角形是锐角三角形,那么cosA=5/13.用余弦定理:BC^2=a^2+a^2-2a*a*cosA,解得a=根下13;那么CD=1/4a=(根下13)/4
1)∠BAO=∠ABO,∠CAO=∠ACO,∠ABC+∠ACB=180-∠BAC=180-52=128,∠0BC+∠OCB=∠ABC+∠ACB-(∠ABO+∠ACO)=128-52=76∠BOC=18
(1)∵BD⊥AC,∴∠ADB=90°,∵在Rt△ABD中,AB=AC=5,sinA=2425,∴BD=ABsinA=5×2425=245,∴根据勾股定理得:AD=25-(245)2=75,∴DC=A