在菱形abcd中e是bc的中点且ae垂直于bc设ab等于a求角abc的大小
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:50:27
取AB中点F,连结CF交BD与P点F为AB中点,PE等于PF,此时的P即为所求三角形BCF中,角ABC等于60度,BF=BE=1,BC=2所以三角形BCF是直角三角形,BFC是直角,CF等于√3△PE
(1)证明:菱形ABCD中,AB=BC=CD=AD,∠B=∠D,∵E、F分别是BC、CD的中点,∴BE=DF.在△ABE和△ADF中AB=AD,∠B=∠D,BE=DF,∴△ABE≌△ADF(SAS).
(1)∵四边形ABCD是菱形∴BC=AB=4∵E是BC的中点∴BE=2∴cos∠ABC=BE/AB=2/4=1/2∴∠ABC=60°(2)菱形ABCD的面积=底边×高=BC×AE∵∠ABC=60°∴A
由AB=BC=2BE(菱形邻边相等),角AEB=90度可知角BAE=30度.故角B=60度.其余三个角则可用平行四边形性质求,角D=60度,角BAD=角BCD=120度
(1)∵四边形ABCD是菱形,∴AB=BC=AD=CD,∠B=∠D,∵点E、F分别是边BC、AD的中点,∴BE=DF,在△ABE和△CDF中,∵AB=CD∠B=∠DBE=DF,∴△ABE≌△CDF(S
证明:∵E是AB的中点,G是AC的中点∴EG是△ABC的中位线∴EG=½BC,EG//BC∵H是BD的中点,F是CD的中点∴HF是△BCD的中位线∴HF=½BC,HF//BC∴EG
证明:∵E是AB的中点,G是AC的中点∴EG是△ABC的中位线∴EG=½BC,EG//BC∵H是BD的中点,F是CD的中点∴HF是△BCD的中位线∴HF=½BC,HF//BC∴EG
因为ABCD是菱形,所以AD平行且等于BC,因为FE分别是AD,BC中点,所以AF=EC,所以AF平行且等于EC,所以四边形AECF是平行四边形.又因为AB=AC,E为BC中点,所以AE垂直BC(三线
证明:连接BD,AC.∵矩形ABCD中,E、F、G、H分别是AD、AB、BC、CD的中点,∴AC=BD,∵EF为△ABD的中位线,∴EF=12BD,EF∥BD,又GH为△BCD的中位线,∴GH=12B
连接CE,∵AC⊥BC,E是AB的中点,∴CE=1/2AB=AE=EB,∵△AED是等边三角形,∴AE=DE,∠AED=60º,∴DE=CE,∵AB‖CD,∴∠AED=∠CDE=60&ord
思路参考:由DE是直角三角形ABD斜边上的中线,知EB=ED,∠EBD=∠EDB,由AB‖CD知∠EBD=∠CDB,两直线平行内错角相等.由BC=CD知∠CBD=∠CDB,BD为公共边由角边角相等知:
EF‖BC,AE=1/2*AB△AEF∽△ABCEF=1/2*BCBC=2*EF=8菱形CD=BC=8
证明:∵E、H分别为BD,BC的中点∴EH‖CD,EH=1/2CD同理可得FG‖CD,FG=1/2CD∴EH‖FG,EH=FG∴四边形EHFG是平行四边形同理可得FH=1/2AB∵AB=CD∴EH=E
证明:∵矩形ABCD∴∠A=∠B=∠C=∠D=90,AB=CD,AD=BC∵E是AB的中点,G是CD的中点∴AE=BE=AB/2,CG=DG=CD/2∴AE=BE=CG=DG∵F是BC的中点,H是AD
如图, ∵AO=CO,∠OAD=∠OCB(内错角),∠AOE=∠COF=90∴△AOE≌△COF, OE=OF∴AECF是菱形(对角线互相垂直且平分的四边形是菱形)
连接AC,由题意可知,△ABC是等边三角形,AE平分∠BAC,所以∠EAC=30°;同理可得,∠FAC=30°,所以∠EAF=∠EAC+∠FAC=60°.故选C.
辅助:连接AC;在三角形ABC中,AE垂直于BC,E是BC的中点,而菱形的性质又决定AB=BC;所以三角形ABC是等边三角形,∠ABC=60度;菱形的面积=AE*菱形边长;AE^2=4^2-2^2=√
证明:(1)∵OA⊥平面ABCD,BD⊂平面ABCD,所以OA⊥BD,∵ABCD是菱形,∴AC⊥BD,又OA∩AC=A,∴BD⊥平面OAC,又∵BD⊂平面OBD,∴平面BD0⊥平面ACO.(2)取OD
四边形ABCD两对角线AC、BD相等
连接AC在菱形ABCD中,角BAD=120°∴∠B=60°∵AB=BC∴⊿ABC是等边三角形∴AB=AC∵E是BC的中点∴AE⊥BC(等腰三角形底边上中线与底边上的高互相重合)