在等边三角形abc中,BD=CD,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:18:01
∵AC=BCCD=CE∠BCD=∠ACE=120°∴△BCD∽=△ACE∴∠CBD=∠CAE∵∠CBA+∠BAC=120°∴∠CBA+∠BAC=∠DBA+∠DBC+∠BAC=∠DBA+∠CAE+∠BA
设AC与BD的交点是F,则AF=1/2AB=1,所以BF=根号3,BD=两倍根号3,所以BD的平方=12
证明:∵△ABC是等边三角形∴∠A=∠B=60°,AB=AC=BC∵AF=BD=CE∴AE=BF∴△AEF≌△BFD∴EF=FD同理可得ED=FD∴△EDF是等边三角形
角CAE+角E=60度角D+角E=180度-120度=60度=>角CAE=角D而对于等边三角形有角ABD=角ECA于是三角形ABD相似于ECA=>AB/EC=BD/CA=>BD*EC=3=边长^2=>
角BCE=角ACD=120所以三角形BCE全等于三角形ACD所以角EBD=角MAD又因为AC=BC角MCB=角ACN=60所以三角形MCB全等于三角形ACN所以CM=CN
∵△ABC和△DEC都是等边三角形∴BC=ACCD=CE∠ACB=∠DCE=60°∠BCD=∠ACB+∠ACD∠ACE=∠DCE+∠ACD∴∠BCD=∠ACE在△ABC和△DEC中,BC=AC∠BCD
∠EOB=120°证明△BCD≌△ACE(SAS)得∠CBD=∠CAE∴∠EOB=∠BAO+∠ABO=∠BAC+∠ABC=120°(2)先证明△ACD≌△CBF(ASA)得CD=BF,∵CD=BD,∴
先证明三角形DBA相似三角形ACE设其边长为x易得1/x=x/3得x=根号3
证明:CE平分∠ACD,∴∠1=∠2=60°,在△ABD和△ACE中,AB=AC,∠B=∠1,BD=CE,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,又∠BAC=60°,∴∠DA
不能!连结AE,BD后,形成一个四边形,又∵B,C,E不在同一直线上∴不能构成平行四边形∴不成立
∵EF垂直平分BD∴EF是BD的垂直平分线∴EB=ED,∵△BFE和△DFE是直角三角形,且EF=EF∴△BFE全等于△DFE(HL)∴∠EBF=∠EDF∵BD平分∠ABC∴∠ABD=∠CBD∴∠EB
解题思路:等边三角形的性质以及全等三角形的性质是解决问题的关键解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prced
三角形ABC等边,于是AB=BC,∠ABD=∠BCE=60°,又BD=CE,所以△ABD≌△BCE(SAS),∠BAD=∠CBE,所以∠BPD=∠ABE+∠BAD=∠ABE+∠CBE=∠ABC=60°
∵CB=CA,CE=CD,∠ACE=∠BCD=120°∴△BCD≌△ACE∴∠DBE=∠CAE∵∠CAE+∠CEA=60°∴∠CEA+∠CBD=60°∴∠BOE=120°
因为AD=BD,所以∠A=∠ABD=30°,又因为∠ABC=90°,所以∠DBC=60°又因为∠ACB=60°,所以得出∠BDC=60°所以△BDC为等边三角形
因为△ABC和△DCE是等边三角形所以∠ACB=∠DCE=60°,AC=BC,CE=CD所以∠ACD=60°,∠ACE=∠BCD=120°所以△ACE≌△BCD(SAS)所以BD=AE请给分~~
∵CD=CE∴∠CDE=∠E∵DE=DB∴∠E=∠DBE,∠ACB=2∠E∵BD平分∠ABC∴∠ABC=2∠E∴∠ABC=∠ACB∴AB=AC∴△ABC是等腰三角形(请看原题.若∠A=∠ABC,则△A
证明:∵ΔABE与ΔACD是等边三角形,∴AE=AB,AC=AD,∠AB=∠CAD=60°,∴∠EAB+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,∴ΔAEC≌ΔABD.再问:第二部那是角什么
证明:因为等边三角形ABC中,D,E分别为AC,BC的中点,所以AE⊥BC,BD⊥AC,∠CBD=30°,BD=AE又因为等边三角形BDF所以BF=BD,∠FBD=60°,∠BDF=60,所以BF=A
证明:∵△ABC和△CDE都是等边三角形∴BC=AC,CD=CE,∠ABC=∠DCE=60°∴∠BCD=∠ACE∴△BCD≌△ACE(SAS)∴BD=CE